早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.(1)求数列{an}和{bn}若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.(1)求数列{an}和{b

题目详情
若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.(1)求数列{an}和{bn}
若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
▼优质解答
答案和解析
(1)设等差数列{an}的公差为d,∵a1=3,a4=12,∴12=3+3d,解得d=3.
∴an=a1+(n-1)d=3+3(n-1)=3n.
∵{bn-an}为等比数列,设公比为q,
又数列{bn}满足b1=4,b4=20.
b4?a4=(b1?a1)q3,即(20-12)=(4-3)q3,解得q=2.
bn?an=2n?1,
∴bn=3n+2n-1
(2)由(1)可得数列{bn}的前n项和=3(1+2+…+n)+1+2+22+…+2n-1
=
3n(n+1)
2
+
2n?1
2?1

=
3n(n+1)
2
+2n-1.