早教吧作业答案频道 -->其他-->
(2011•丰台区二模)已知数列{an}的前n项和为Sn,且Sn=n2.数列{bn}为等比数列,且b1=1,b4=8.(1)求数列{an},{bn}的通项公式;(2)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn;(3)在(2
题目详情
(2011•丰台区二模)已知数列{an}的前n项和为Sn,且Sn=n2.数列{bn}为等比数列,且b1=1,b4=8.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn;
(3)在(2)的条件下,数列{cn}中是否存在三项,使得这三项成等差数列?若存在,求出此三项;若不存在,说明理由.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn;
(3)在(2)的条件下,数列{cn}中是否存在三项,使得这三项成等差数列?若存在,求出此三项;若不存在,说明理由.
▼优质解答
答案和解析
(1)∵数列{an}的前n项和为Sn,且Sn=n2,
∴当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=S1=1亦满足上式,
故an=2n-1,(n∈N*).
又数列{bn}为等比数列,设公比为q,
∵b1=1,b4=b1q3=8,∴q=2.
∴bn=2n-1(n∈N*).
(2)cn=abn=2bn−1=2n−1.
Tn=c1+c2+c3+…cn=(21-1)+(22-1)+…+(2n-1)=(21+22+…2n)-n=
−n.
所以 Tn=2n+1-2-n.
(3)假设数列{cn}中存在三项cm,ck,cl成等差数列,不妨设m<k<l(m,k,l∈N*)
因为 cn=2n-1,
所以 cm<ck<cl,且三者成等差数列.
所以 2ck=cl+cm,
即2(2k-1)=(2m-1)+(2l-1),
变形可得:2•2k=2m+2l=2m(1+2l-m)
所以
=1+2l−m,即2k+1-m=1+2l-m.
所以 2k+1-m-2l-m=1.
因为m<k<l(m,k,l∈N*),
所以 2k+1-m,2l-m均为偶数,而1为奇数,
所以等式不成立.
所以数列{cn}中不存在三项,使得这三项成等差数列.
∴当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=S1=1亦满足上式,
故an=2n-1,(n∈N*).
又数列{bn}为等比数列,设公比为q,
∵b1=1,b4=b1q3=8,∴q=2.
∴bn=2n-1(n∈N*).
(2)cn=abn=2bn−1=2n−1.
Tn=c1+c2+c3+…cn=(21-1)+(22-1)+…+(2n-1)=(21+22+…2n)-n=
2(1−2n) |
1−2 |
所以 Tn=2n+1-2-n.
(3)假设数列{cn}中存在三项cm,ck,cl成等差数列,不妨设m<k<l(m,k,l∈N*)
因为 cn=2n-1,
所以 cm<ck<cl,且三者成等差数列.
所以 2ck=cl+cm,
即2(2k-1)=(2m-1)+(2l-1),
变形可得:2•2k=2m+2l=2m(1+2l-m)
所以
2k+1 |
2m |
所以 2k+1-m-2l-m=1.
因为m<k<l(m,k,l∈N*),
所以 2k+1-m,2l-m均为偶数,而1为奇数,
所以等式不成立.
所以数列{cn}中不存在三项,使得这三项成等差数列.
看了 (2011•丰台区二模)已知...的网友还看了以下:
已知:二次函数y=x2+bx+c(b、c为常数).(1)若二次函数的图象经过A(-2,-3)和B(2 2020-03-31 …
如图,二次函数y=ax2+bx+c的图像与x轴交于点A(6,0)和点B(2,0),与y轴交于点C( 2020-04-27 …
如图,二次函数y=ax^2+bx+c的图像交x轴于A(-2,0)B(1,0)交y轴于点C(0,-2 2020-05-16 …
关于一元二次方程解的情况题:已知实数a,b,c,且a^2+b^2+c^2=a+b+c=2,求a,b 2020-05-17 …
求出函数的解析式1.二次函数y=ax^2+bx+c(a不等于0),三个坐标如下:A(1,0),B( 2020-05-24 …
已知二次函数y=x^2+bx+c若二次函数的图像经过A(-2,-3)B(2,5)两点求此二次函数的 2020-06-23 …
a等于负六,b等于负二,c等于二十四点d为数轴上一点,他表示的数为x,求49/81(3x-a)^a 2020-07-17 …
立体几何折叠问题边长为a的正三角形以他的高AD为折痕折成一个二面角B1-AD-C,求;若二面角为直 2020-08-02 …
1、已知函数f(x)=(2^x-2^-x)/(2^x+2^-x),求函数值域2、已知二次函数f(x) 2020-11-27 …
已知二次函数y=x2+bx+c的图像经过(1,0)(2,5)两点.(1)求此二次函数的解析式?(2) 2021-01-07 …