早教吧作业答案频道 -->数学-->
设数列{an}的前n项和Sn满足:Sn=n2,等比数列{bn}满足:b2=2,b5=16(1)求数列{an},{bn}的通项公式;(2)求数列{anbn}的前n项和Tn.
题目详情
设数列{an}的前n项和Sn满足:Sn=n2,等比数列{bn}满足:b2=2,b5=16
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn.
▼优质解答
答案和解析
(1){an}的前n项和Sn满足:Sn=n2,
n=1时,a1=S1=1,n>1时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
n=1也成立.
故an=2n-1,
等比数列{bn}满足:b2=2,b5=16,
q3=
=8,解得q=2.
则有bn=b2qn-2=2n-1;
(2)前n项和Tn=1•1+3•2+5•4+7•8+…+(2n-1)•2n-1,
2Tn=1•2+3•4+5•8+7•16+…+(2n-1)•2n,
两式相减.得-Tn=1+2•2+2•4+2•8+2•16+…+2•2n-1-(2n-1)•2n,
即有-Tn=1+
-(2n-1)•2n,
则有Tn=(2n-3)2n+3.
n=1时,a1=S1=1,n>1时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
n=1也成立.
故an=2n-1,
等比数列{bn}满足:b2=2,b5=16,
q3=
b5 |
b2 |
则有bn=b2qn-2=2n-1;
(2)前n项和Tn=1•1+3•2+5•4+7•8+…+(2n-1)•2n-1,
2Tn=1•2+3•4+5•8+7•16+…+(2n-1)•2n,
两式相减.得-Tn=1+2•2+2•4+2•8+2•16+…+2•2n-1-(2n-1)•2n,
即有-Tn=1+
4(1-2n-1) |
1-2 |
则有Tn=(2n-3)2n+3.
看了 设数列{an}的前n项和Sn...的网友还看了以下:
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知数列an是各项均不为0的等差数列,Sn为其前n项和,且满足S2n-1=1/2an^2,数列bn 2020-04-09 …
设为数列的前n项和,对任意的,都有(m为常数,且m>0).(1)求证:数列是等比数列.(2)设数列 2020-05-13 …
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+1} 2020-05-13 …
(2014•青岛一模)在数列{an}(n∈N*)中,其前n项和为Sn,满足2Sn=n-n2.(Ⅰ) 2020-06-12 …
数列{an}的前n项和Sn满足:Sn=n(n+3)/2(n属于N+)(1)设bn=2^n*an,求 2020-06-27 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
已知数列(An)满足A1=2,对于任意的n属于正整数,都有An大于0,且满足(n+1)×((An) 2020-07-20 …
已知数列{An}满足2a(n+1)=an+a(n+2),它的前n项和为An,且A3=5,A6=36. 2020-12-08 …