早教吧作业答案频道 -->数学-->
数列{an}满足an-an+1=an•an+1(n∈N+),数列{bn}满足bn=1an,且b1+b2+…+b9=90,则b4•b5的最大值是.
题目详情
数列{an}满足an-an+1=an•an+1(n∈N+),数列{bn}满足bn=
,且b1+b2+…+b9=90,则b4•b5的最大值是___.
1 |
an |
▼优质解答
答案和解析
∵an-an+1=an•an+1(n∈N+),
∴
-
=1,
∵数列{bn}满足bn=
,
∴数列{bn}是公差为1的等差数列,
∵b1+b2+…+b9=90,
∴9b1+
×1=90,解得b1=6,
∴bn=6+(n-1)×1=n+5,
∴b4+b5=(4+5)+(5+5)=19,又bn>0,
∴b4•b5≤(
)2=(
)2=
.
故答案为:
.
∴
1 |
an+1 |
1 |
an |
∵数列{bn}满足bn=
1 |
an |
∴数列{bn}是公差为1的等差数列,
∵b1+b2+…+b9=90,
∴9b1+
9×8 |
2 |
∴bn=6+(n-1)×1=n+5,
∴b4+b5=(4+5)+(5+5)=19,又bn>0,
∴b4•b5≤(
b4+b5 |
2 |
19 |
2 |
361 |
4 |
故答案为:
361 |
4 |
看了 数列{an}满足an-an+...的网友还看了以下:
已知数列{an}的前n项和为Sn,又有数列{bn},它们满足关系b1=a1,对于n∈N*,有an+ 2020-05-13 …
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+已 2020-05-15 …
几道数列题二㊣小开(317052920) 14:49:021.正实数a,b,c成等差数列,c,a, 2020-05-17 …
数列{an},{bn}中,a1=3,b1=0,当n≥2时an=[2a(n-1)+b(n-1)]/3 2020-07-09 …
对于无穷数列{an}与{bn},记A={x|x=an,n∈N*},B={x|x=bn,n∈N*}, 2020-07-22 …
下列命题中不正确的是A.任意a,b∈R,an=a*n+b,有{an}是等差数列B.存在a,b∈R, 2020-07-30 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
设数列{an}的前n项和为Sn.已知b*an-2^n=(b-1)Sn求an的通项公式,最好用构造法做 2020-12-05 …
已知数列{an}中,a1=1/2点(n,2a(n+1)-an)在直线y=x上其中n=1,2,3,4, 2020-12-24 …