早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的前n项和为Sn,其中a1=12,5Sn=7an-an-1+5Sn-1(n≥2);等差数列{bn},其中b3=2,b5=6,.(1)求数列{an}的通项公式;(2)若cn=(bn+3)an,求数

题目详情
已知数列{a n }的前n项和为S n ,其中 a 1 =
1
2
,5S n =7a n -a n-1 +5S n-1 (n≥2);等差数列{b n },其中b 3 =2,b 5 =6,.
(1)求数列{a n }的通项公式;
(2)若c n =(b n +3)a n ,求数列{c n }的前n项和T n
▼优质解答
答案和解析
(1)∵5S n =7a n -a n-1 +5S n-1 (n≥2);
∴5S n -5S n-1 =7a n -a n-1
∴2a n =a n-1
a n
a n-1
=
1
2

即数列{a n }是公比q=
1
2
的等比数列,
a 1 =
1
2
,∴ a n =
1
2
(
1
2
) n-1 =
1
2 n

(2)在等差数列{b n },
∵b 3 =2,b 5 =6,
b 1 +2d=2
b 1 +4d=6
,解得
b 1 =-2
d=2

∴b n =-2+2(n-1)=2n-4,
∵c n =(b n +3)a n
∴c n =(b n +3)a n =(2n-1)
1
2 n

T n =1×
1
2
+3×
1
2 2
+5×
1
2 3
+…+(2n-1)×
1
2 n
1
2
T n =1×
1
2 2
+3×
1
2 3
+…+(2n-3)×
1
2 n
+(2n-1)×
1
2 n+1

两式作差得:
1
2
T n =
1
2
+2×(
1
2 2
+
1
2 3
+…+
1
2 n
)-(2n-1)×
1
2 n+1
=
1
2
+
1
2 2
[1- (
1
2
) n-1 ]
1-
1
2
-(2n-1)×
1
2 n+1

T n =3-
2n+3
2 n