早教吧作业答案频道 -->数学-->
数列{an}是等差数列,已知a1=19,d=-2,Sn为{an}的前n项和①求通项an及Sn②若{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn
题目详情
数列{an}是等差数列,已知a1=19,d=-2,Sn为{an}的前n项和
①求通项an及Sn
②若{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn
①求通项an及Sn
②若{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn
▼优质解答
答案和解析
分析:你应知道等差数列的通项公式和前N项和公式:an=a1+(n-1)d sn=na1+n(n-1)d/2及等比数列的通项公式和前N项和公式:
(1)由公式得:an=19-2(n-1)=21-2n,Sn=19n+n(n-1)/2×(-2)=20n-n²
(2)bn-an=3^(n-1),∴bn=3^(n-1)+21-2n
Tn=b1+b2+b3+b4+……bn
=(3^0+21-2×1)+(3^1+21-2×2)+(3²+21-2×3)+(3³+21-2×4)+.+(3^(n-1)+21-2×(n-1))
=(3^0+3^1+3²+3³+.3^(n-1))+[(21-2×1)+(21-2×2)+(21-2×3)+(21-2×4)+.+(21-2×(n-1))]
前一个括号是等比数列,后一个括号是an的前n项和
=1(1-3^n)/(-2)+20n-n²
=3^n/2-n²+20n-1/2
(1)由公式得:an=19-2(n-1)=21-2n,Sn=19n+n(n-1)/2×(-2)=20n-n²
(2)bn-an=3^(n-1),∴bn=3^(n-1)+21-2n
Tn=b1+b2+b3+b4+……bn
=(3^0+21-2×1)+(3^1+21-2×2)+(3²+21-2×3)+(3³+21-2×4)+.+(3^(n-1)+21-2×(n-1))
=(3^0+3^1+3²+3³+.3^(n-1))+[(21-2×1)+(21-2×2)+(21-2×3)+(21-2×4)+.+(21-2×(n-1))]
前一个括号是等比数列,后一个括号是an的前n项和
=1(1-3^n)/(-2)+20n-n²
=3^n/2-n²+20n-1/2
看了 数列{an}是等差数列,已知...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
用归纳法证明:(1).1+2+3+...+n=n/2(n+1)(2).以a1为首项、以q为公比的等 2020-07-29 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …