早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线y=x2-4x+3与x轴交于A、B两点,与y轴交于点C,连AC,将直线AC向右平移交抛物线于点P,交x轴于Q点,且∠CPQ=135°,求直线PQ的解析式.

题目详情
已知抛物线y=x2-4x+3与x轴交于A、B两点,与y轴交于点C,连AC,将直线AC向右平移交抛物线于点P,交x轴于Q点,且∠CPQ=135°,求直线PQ的解析式.
▼优质解答
答案和解析
∵抛物线y=x2-4x+3与x轴交于A、B两点,与y轴交于点C,
∴易求A(1,0),C(0,3),直线AC的解析式为y=-3x+3.
∴OC=3,OA=1.
∵∠CPQ=135°,
∴∠EPQ=45°,
∵AC∥PD,
∴∠ACP=45°,
作CA⊥AE交直线PC于E,EH⊥x轴于H,则∠ACO=∠EAH,AC=AE,∠AOC=∠EHA=90°,
∴在△AOC与△EHA中,
∠AOC=∠EHA
∠ACO=∠EAH
AC=EA

∴△AOC≌△EHA(AAS).
∵CO=HA=3,AO=HE=1,
∴点E的坐标为(4,1),
∴直线CE的解析式为y=-
1
2
x+3,
y=x2−4x+3
y=−
1
2
x+3

∴解得点P坐标为(
7
2
5
4
).
∵AC∥PQ,
∴直线PQ的解析式为:y=-3x+
47
4