早教吧作业答案频道 -->数学-->
如图,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD•DC.
题目详情
如图,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:
(1)∠CAD=2∠DBE;
(2)AD2-AB2=BD•DC.
(1)∠CAD=2∠DBE;
(2)AD2-AB2=BD•DC.
▼优质解答
答案和解析
证明:(1)延长BE交圆于点F,
∴∠DBF=∠1
∵AB=AE
∴∠ABE=∠AEB=∠1+∠F
∴
=
+
=
+
∵AB=AC
∴
=
∴
=
∴点F是
的中点
∴∠DAC=2∠1
∴∠CAD=2∠DBE;
(2)连接BC交AD于点G,
∵AB=AC
∴∠2=∠5,∠BAG=∠DAB,
∴△BAG∽△DAB.
∴AB2=AG•AD.
∴AD2-AB2=AD2-AG•AD=AD(AD-AG)=AD•DG,
∵∠5=∠ADC,∠DBG=∠DAC,
∴△BDG∽△ADC.
∴
=
,
∴AD•DG=BD•DC.
∴AD2-AB2=BD•DC.
∴∠DBF=∠1
∵AB=AE
∴∠ABE=∠AEB=∠1+∠F
∴
AF |
AC |
CF |
AB |
DF |
∵AB=AC
∴
AB |
AC |
∴
CF |
DF |
∴点F是
CD |
∴∠DAC=2∠1
∴∠CAD=2∠DBE;
(2)连接BC交AD于点G,
∵AB=AC
∴∠2=∠5,∠BAG=∠DAB,
∴△BAG∽△DAB.
∴AB2=AG•AD.
∴AD2-AB2=AD2-AG•AD=AD(AD-AG)=AD•DG,
∵∠5=∠ADC,∠DBG=∠DAC,
∴△BDG∽△ADC.
∴
BD |
AD |
DG |
DC |
∴AD•DG=BD•DC.
∴AD2-AB2=BD•DC.
看了 如图,AB,AC,AD是圆中...的网友还看了以下:
问一个关于圆的初三数学题.(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点 2020-04-26 …
\"何事长向别时圆\"的下一句是什么 2020-05-14 …
何事常向别时圆的下一句 2020-05-14 …
椭圆的第三定义是什么? 2020-05-16 …
关于圆的下列说法中,正确的有...1.相等的圆心角所对的弧相等2.平分弦的直径垂直于弦3.长度相等 2020-05-22 …
●假设一个6阶的下三角矩阵B按列优先顺序压缩存储在一维数组A中,其中A[0]存储矩阵的第一个元素b1 2020-05-25 …
设有如下所示的下三角矩阵A[0..8,0..8],将该三角矩阵的非零元素(即行下标不小于列下标的所有 2020-05-26 …
设有如下所示的下三角矩阵A[0..8,0..8],将该三角矩阵的非零元素(即行下标不小于列下标的所有 2020-05-26 …
一道关于圆的初三的数学题.明天要交作业,OA为圆o的半径,以OA为直径的圆c与圆o的弦AB相交于点 2020-06-04 …
物无规矩难成方圆的下句是什么 2020-06-04 …