早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD•DC.

题目详情
如图,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:

(1)∠CAD=2∠DBE;
(2)AD2-AB2=BD•DC.
▼优质解答
答案和解析
证明:(1)延长BE交圆于点F,
∴∠DBF=∠1
∵AB=AE
∴∠ABE=∠AEB=∠1+∠F
AF
AC
+
CF
AB
+
DF

∵AB=AC
AB
AC

CF
DF

∴点F是
CD
的中点
∴∠DAC=2∠1
∴∠CAD=2∠DBE;
(2)连接BC交AD于点G,
∵AB=AC
∴∠2=∠5,∠BAG=∠DAB,
∴△BAG∽△DAB.
∴AB2=AG•AD.
∴AD2-AB2=AD2-AG•AD=AD(AD-AG)=AD•DG,
∵∠5=∠ADC,∠DBG=∠DAC,
∴△BDG∽△ADC.
BD
AD
DG
DC

∴AD•DG=BD•DC.
∴AD2-AB2=BD•DC.