早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在梯形ABCD中,AB∥CD,∠A=60°,∠B=30°,AD=CD=6,则AB的长为.

题目详情

▼优质解答
答案和解析
分别过D点,C点作DE⊥AB,CF⊥AB,垂足分别为E,F.
∵∠A=60°,DE⊥AB,
∴∠ADE=30°,
∴AE=
1
2
AD=
1
2
×6=3.
∴DE=
AD2−AE2
=
36−9
=3
3

∵AB∥CD,
∴CDEF是矩形,
∴CD=EF,DE=CF=3
3

∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
1
2
111222AD=
1
2
×6=3.
∴DE=
AD2−AE2
=
36−9
=3
3

∵AB∥CD,
∴CDEF是矩形,
∴CD=EF,DE=CF=3
3

∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
1
2
111222×6=3.
∴DE=
AD2−AE2
=
36−9
=3
3

∵AB∥CD,
∴CDEF是矩形,
∴CD=EF,DE=CF=3
3

∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
AD2−AE2
AD2−AE2
AD2−AE2AD2−AE22−AE22=
36−9
=3
3

∵AB∥CD,
∴CDEF是矩形,
∴CD=EF,DE=CF=3
3

∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
36−9
36−9
36−936−9=3
3

∵AB∥CD,
∴CDEF是矩形,
∴CD=EF,DE=CF=3
3

∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
3
3
33
∵AB∥CD,
∴CDEF是矩形,
∴CD=EF,DE=CF=3
3

∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
3
3
33,
∵∠B=30°,CF⊥AB,
∴BC=6
3

FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
3
3
33,
FB=
BC2−CF2
=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
BC2−CF2
BC2−CF2
BC2−CF2BC2−CF22−CF22=
108−27
=9,
∴AB=AE+EF+FB=3+6+9=18.
108−27
108−27
108−27108−27=9,
∴AB=AE+EF+FB=3+6+9=18.