早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设y=ln(x+√x^2+1),求y'(√3)

题目详情
设y=ln(x+√x^2+1),求y'(√3)
▼优质解答
答案和解析
先求y'
y'=[x+(x²+1)^(1/2)]'/[x+(x²+1)^(1/2)]
=[1+1/2*(x²+1)^(-1/2)*2x]/[x+(x²+1)^(1/2)]
=[(x²+1)^(1/2)+x]/(x²+1)^(1/2)/[x+(x²+1)^(1/2)]
=1/(x²+1)^(1/2)
故y'(3^(1/2))=1/(3+1)^(1/2)=1/2