早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等差数列{an}的前n项和为Sn,且满足S4=24,S7=63.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=2an+an,求数列{bn}的前n项和Tn.

题目详情
已知等差数列{an}的前n项和为Sn,且满足S4=24,S7=63.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2an+an,求数列{bn}的前n项和Tn
▼优质解答
答案和解析
(Ⅰ)∵{an}为等差数列,
S4=4a1+
4×3
2
d=24
S7=7a1+
7×6
2
d=63
a1=3
d=2
⇒an=2n+1.
(Ⅱ)∵bn=2an+an=22n+1+(2n+1)=2×4n+(2n+1),
Tn=2(4+42+…+4n)+(3+5+…+2n+1)=
4(1-4n)
1-4
+
n(3+2n+1)
2
=
8
3
(4n-1)+n2+2n.