早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在Rt△ABC中,∠C=90°,BC=3,AC=4.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点

题目详情
如图,在Rt△ABC中,∠C=90°,BC=3,AC=4.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式;
(3)当x为何值时,△HDE为等腰三角形?




▼优质解答
答案和解析
(1)证明:∵A、D关于点Q成中心对称,HQ⊥AB,
∴∠HQD=∠C=90°,HD=HA,
∴∠HDQ=∠A,
∴△DHQ∽△ABC.
(2)①如图1,当0<x≤
5
4
时,
ED=5-4x,QH=AQtanA=
3
4
x,
此时y=
1
2
(5-4x)×
3
4
x=-
3
2
x2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444时,
ED=5-4x,QH=AQtanA=
3
4
x,
此时y=
1
2
(5-4x)×
3
4
x=-
3
2
x2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
3
4
333444x,
此时y=
1
2
(5-4x)×
3
4
x=-
3
2
x2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
1
2
111222(5-4x)×
3
4
x=-
3
2
x2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
3
4
333444x=-
3
2
x2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
3
2
333222x2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
2+
15
8
x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
15
8
151515888x,
②如图2,当
5
4
<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444<x≤
5
2
时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
2
555222时,
ED=4x-5,QH=AQtanA=
3
4
x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
3
4
333444x,
此时y=
1
2
(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
1
2
111222(4x-5)×
3
4
x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
3
4
333444x=
3
2
x2-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
3
2
333222x22-
15
8
x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
15
8
151515888x,

(3)①如图1,当0<x<
5
4
时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444时,
若DE=DH,∵DH=AH=
QA
cosA
=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
QA
cosA
QAQAQAcosAcosAcosA=
5
4
x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444x,DE=10-4x,
∴5-4x=
5
4
x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444x,x=
15
16

∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
15
16
151515161616.
∵∠EDH>90°,
∴EH>ED,EH>DH,
即ED=EH,HD=HE不可能;
②如图2,当
5
4
<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444<x≤
5
2
时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
2
555222时,
若DE=DH,4x-5=
5
4
x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
4
555444x,x=
20
21

若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
20
21
202020212121;
若HD=HE,此时点D,E分别与点B,A重合,x=
5
2

若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
5
2
555222;
若ED=EH,则∠ADH=∠DHE,
又∵点A、D关于点Q对称,
∴∠A=∠ADH,
∴△EDH∽△HDA,
ED
DH
=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
ED
DH
EDEDEDDHDHDH=
DH
AD
,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
DH
AD
DHDHDHADADAD,x=
160
103

∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
160
103
160160160103103103,
∴当x的值为
15
16
25
16
5
2
160
103
时,△HDE是等腰三角形.
15
16
151515161616,
25
16
5
2
160
103
时,△HDE是等腰三角形.
25
16
252525161616,
5
2
160
103
时,△HDE是等腰三角形.
5
2
555222,
160
103
时,△HDE是等腰三角形.
160
103
160160160103103103时,△HDE是等腰三角形.