早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在计算:1+3+3^2+3^3+...+3^100的值时,S=1+3+3^2+3^3+...+3^100①,则3S=3+3^2+3^3+...+3^101②,②-①得2S=3^101-1,所以S=3^101-1÷2,请你计算:1+5+5^2+5^3+5^4+...+5^99+5^100的值.(所有?^*的意思是?的*次方)

题目详情
在计算:1+3+3^2+3^3+...+3^100的值时,S=1+3+3^2+3^3+...+3^100①,则3S=3+3^2+3^3+...+3^101②,②-①得2S=3^101-1,所以S=3^101-1÷2,请你计算:1+5+5^2+5^3+5^4+...+5^99+5^100的值.(所有?^*的意思是?的*次方)
▼优质解答
答案和解析
令s=1+5+5^2+5^3+5^4+……+5^99+5^100
5s=5+5^2+5^3+5^4+……+5^99+5^100+5^101
5s-s=5^101-1
4s=5^101-1
s=(5^101-1)/4