早教吧 育儿知识 作业答案 考试题库 百科 知识分享

阅读下列材料:某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(

题目详情
阅读下列材料:
某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(22048+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(24+1)(28+1)…(22048+1)=(22048-1)(22048+1)=24096-1
回答下列问题:
(1)请借鉴该同学的经验,计算:(1+
1
2
)(1+
1
22
)(1+
1
24
)(1+
1
28
)+
1
215

(2)借用上面的方法,再逆用平方差公式计算:(1−
1
22
)(1−
1
32
)(1−
1
42
)…(1−
1
102
).
▼优质解答
答案和解析
(1)原式=2(1-
1
2
)(1+
1
2
)…(1+
1
28
)+
1
215

=2(1-
1
216
)+
1
215

=2-
1
215
+
1
215

=2;

(2)(1−
1
22
)(1−
1
32
)(1−
1
42
)…(1−
1
102
),
=(1-
1
2
)(1+
1
2
)(1-
1
3
)(1+
1
3
)…(1-
1
10
)(1+
1
10
),
=
1
2
×
3
2
×
2
3
×
4
3
×…×
9
10
×
11
10

=
1
2
×
11
10

=
11
20