早教吧 育儿知识 作业答案 考试题库 百科 知识分享

x7+1因式分解怎么来分解

题目详情
x7+1因式分解怎么来分解
▼优质解答
答案和解析
x^7 + 1
首先增加一次项
= x^7 - x + x + 1
= x( x^6 - 1 ) + ( x + 1 )
接着做平方差、立方和、立方差分解
= x( x'" - 1 )( x"' + 1 ) + ( x + 1 )
= x( x - 1 )( x" + x + 1 )( x + 1 )( x" - x + 1 ) + ( x + 1 )
提取公因式 ( x + 1 )
= ( x + 1 )[ x( x - 1 )( x" + 1 + x )( x" + 1 - x ) + 1 ]
= ( x + 1 )[ x( x - 1 )( x^4 + 2x" + 1 - x" ) + 1 ]
再用平方差相乘
= ( x + 1 )[ ( x" - x )( x^4 + x" + 1 ) + 1 ]
= ( x + 1 )[ x^6 + x^4 + x" - x^5 - x^3 - x + 1 ]
= ( x + 1 )( x^6 - x^5 + x^4 - x"' + x" - x + 1 )
或者增加三次项
= x^7 - x"' + x"' + 1
= x"'( x^4 - 1 ) + ( x + 1 )( x" - x + 1 )
= x"'( x" - 1 )( x" + 1 ) + ( x + 1 )( x" - x + 1 )
= x"'( x - 1 )( x + 1 )( x" + 1 ) + ( x + 1 )( x" - x + 1 )
= ( x + 1 )[ x"'( x - 1 )( x" + 1 ) + ( x" - x + 1 ) ]
= ( x + 1 )[ x"'( x"' - x" + x - 1 ) + x" - x + 1 ]
= ( x + 1 )( x^6 - x^5 + x^4 - x^3 + x" - x + 1 )
增加四次项也行
= x^7 + x^4 - x^4 + 1
= x^4( x"' + 1 ) - ( x^4 - 1 )
= x^4( x + 1 )( x" - x + 1 ) - ( x" - 1 )( x" + 1 )
= ( x + 1 )( x^6 - x^5 + x^4 ) - ( x + 1 )( x - 1 )( x" + 1 )
= ( x + 1 )[ ( x^6 - x^5 + x^4 ) - ( x" + 1 )( x - 1 ) ]
= ( x + 1 )[ ( x^6 - x^5 + x^4 ) - ( x"' - x" + x - 1 ) ]
= ( x + 1 )( x^6 - x^5 + x^4 - x"' + x" - x + 1 )
还可以增加六次项
= x^7 + x^6 - x^6 + 1
= x^6( x + 1 ) - ( x^6 - 1 )
= x^6( x + 1 ) - ( x"' + 1 )( x"' - 1 )
= x^6( x + 1 ) - ( x + 1 )( x" + 1 - x )( x" + 1 + x )( x - 1 )
= x^6( x + 1 ) - ( x + 1 )( x^4 + 2x" + 1 - x" )( x - 1 )
= ( x + 1 )[ x^6 - ( x^4 + x" + 1 )( x - 1 ) ]
= ( x + 1 )[ x^6 - ( x^5 + x^3 + x - x^4 - x" - 1 ) ]
= ( x + 1 )[ x^6 - x^5 - x^3 - x + x^4 + x" + 1 ]
= ( x + 1 )( x^6 - x^5 + x^4 - x^3 + x" - x + 1 )
总之,7 = 6 + 1 = 2 X 3 + 1
还有,7 = 4 + 3 = 2 X 2 + 3
利用一次项、三次项、四次项、六次项做变化
都可以使用平方差、立方和、立方差,进行分组分解
可是二次项、五次项就不行了
这样看来,还是利用四次项做变化最方便