早教吧作业答案频道 -->数学-->
1*100+3*99+5*98+.+197*2+199*1=?
题目详情
1*100+3*99+5*98+.+197*2+199*1=?
▼优质解答
答案和解析
1*100+3*99+5*98+.+197*2+199*1
=100+99+98+.+3+2+1
+99+98+.+3+2+1
+99+98+.+3+2+1
+98+.+3+2+1
+98+.+3+2+1
.
2+1
2+1
+1
+1
=[(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1]
+[(99+98+.+2+1)+(2+1)+1]
先计算(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1
(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1
=100x101/2+99x100/2+98x99/2+.+2x3/2+1x2/2
=(100x101+99x100+.+2x3+1x2)/2
=(100²+100+99²+99+98²+98+.+2²+2+1²+1)/2
=(1+2+...+99+100+1²+2²+.+99²+100²)/2(利用平方和公式)
=100x101/2+100x(100+1)(2x100+1)/6
=5050+338350
=343400
再计算(99+98+.+2+1)+(2+1)+1
(99+98+.+2+1)+(2+1)+1
=99x100/2+98x99/2+.+2x3/2+1x2/2
=(99x100+.+2x3+1x2)/2
=(99²+99+98²+98+.+2²+2+1²+1)/2(同上面的过程)
=(1+2+...+99+1²+2²+.+99²)/2
=99x100/2+99x(99+1)(2x99+1)/6
=4950+328350
=333300
∴1*100+3*99+5*98+.+197*2+199*1
=[(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1]
+[(99+98+.+2+1)+(2+1)+1]
=343400+333300
=676700
如有不懂,欢迎追问
=100+99+98+.+3+2+1
+99+98+.+3+2+1
+99+98+.+3+2+1
+98+.+3+2+1
+98+.+3+2+1
.
2+1
2+1
+1
+1
=[(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1]
+[(99+98+.+2+1)+(2+1)+1]
先计算(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1
(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1
=100x101/2+99x100/2+98x99/2+.+2x3/2+1x2/2
=(100x101+99x100+.+2x3+1x2)/2
=(100²+100+99²+99+98²+98+.+2²+2+1²+1)/2
=(1+2+...+99+100+1²+2²+.+99²+100²)/2(利用平方和公式)
=100x101/2+100x(100+1)(2x100+1)/6
=5050+338350
=343400
再计算(99+98+.+2+1)+(2+1)+1
(99+98+.+2+1)+(2+1)+1
=99x100/2+98x99/2+.+2x3/2+1x2/2
=(99x100+.+2x3+1x2)/2
=(99²+99+98²+98+.+2²+2+1²+1)/2(同上面的过程)
=(1+2+...+99+1²+2²+.+99²)/2
=99x100/2+99x(99+1)(2x99+1)/6
=4950+328350
=333300
∴1*100+3*99+5*98+.+197*2+199*1
=[(100+99+98+.+2+1)+(99+98+.+2+1)+(2+1)+1]
+[(99+98+.+2+1)+(2+1)+1]
=343400+333300
=676700
如有不懂,欢迎追问
看了 1*100+3*99+5*9...的网友还看了以下:
99…9×99…9+199…9的算术平方根99…9×99…9+199…9—m个—m个m个都是m个正 2020-04-11 …
99乘199 99乘199+199 2020-05-16 …
根号9*9+19=根号99*99+199=根号999*999+1999=根号99…9*99…9+1 2020-06-13 …
计算下列各式的和1+2+3+4+……+98+99+100=?1+3+5+7+……+197+199= 2020-07-18 …
1*100+3*99+5*98+.+197*2+199*1=? 2020-07-18 …
1十3十…十197+199-(1+3+5+...+97+99) 2020-07-18 …
999.99×999.99+199.99999.99(9有1992个)×999.99(9有1992 2020-07-18 …
(1)200.2×20.01-200.1×19.99(2)(1+12)×(1−12)×(1+13) 2020-07-18 …
连续奇数的乘积5的K次方是99到199中所有奇数的乘积,问K最大是多少.是99到199所有奇数的乘 2020-08-02 …
找规律练习题1=1*11+3=4=2*21+3+5=9=3*31+3+5+7=16=4*41+3+5 2021-01-21 …