早教吧作业答案频道 -->数学-->
证明(Cn0)^2+(Cn1)^2+(Cn2)^2+……+(Cnn)^2=(2n)!/n!^2
题目详情
证明(Cn0)^2+(Cn1)^2+(Cn2)^2+……+(Cnn)^2=(2n)!/n!^2
▼优质解答
答案和解析
∵(1+x)n(1+x)n=(1+x)2n,比较两边x^n的系数.
左边展开式中x^n的系数为:
Cn0CnN+Cn1CnN-1+Cn2CnN-2+…+CnNCn0=(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2
右边展开式中x^n的系数为:C2nN
-(此处应为x^n而非原来的x^2n)
从而:(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2=C2nN=(2n)!/n!^2
这个题的解题思路是先将左边两个n次因子分别计算出来(其实两个n次因子是一样的,都是(1+x)^n),再将两个n次n+1项多项式相乘,其中能产生x^n的项共有n+1项,它们的系数之和即为:
Cn0CnN+Cn1CnN-1+Cn2CnN-2+…+CnNCn0=(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2
而右边x^n项的系数直接按多项式高次展开式公式进行计算,即为:C2nN
两边是相等的,所以它们的对应项也应该是相等的,则对应项的系数也是相等的,上面的x^n项的系数也应该是相等的,所以:
Cn0CnN+Cn1CnN-1+Cn2CnN-2+…+CnNCn0=(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2
=C2nN
=(2n)!/n!^2
即
(Cn0)^2+(Cn1)^2+(Cn2)^2+……+(Cnn)^2=(2n)!/n!^2
左边展开式中x^n的系数为:
Cn0CnN+Cn1CnN-1+Cn2CnN-2+…+CnNCn0=(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2
右边展开式中x^n的系数为:C2nN
-(此处应为x^n而非原来的x^2n)
从而:(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2=C2nN=(2n)!/n!^2
这个题的解题思路是先将左边两个n次因子分别计算出来(其实两个n次因子是一样的,都是(1+x)^n),再将两个n次n+1项多项式相乘,其中能产生x^n的项共有n+1项,它们的系数之和即为:
Cn0CnN+Cn1CnN-1+Cn2CnN-2+…+CnNCn0=(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2
而右边x^n项的系数直接按多项式高次展开式公式进行计算,即为:C2nN
两边是相等的,所以它们的对应项也应该是相等的,则对应项的系数也是相等的,上面的x^n项的系数也应该是相等的,所以:
Cn0CnN+Cn1CnN-1+Cn2CnN-2+…+CnNCn0=(Cn0)2+(Cn1)2+(Cn2)2+…+(CnN)2
=C2nN
=(2n)!/n!^2
即
(Cn0)^2+(Cn1)^2+(Cn2)^2+……+(Cnn)^2=(2n)!/n!^2
看了 证明(Cn0)^2+(Cn1...的网友还看了以下:
1求和1*2+2*2的平方+3*2的立方……+n*2的n次方.2求1/23/48/571求和1*2 2020-04-07 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
1=2的2²-1,1+2=2²-1,1+2+2²=2的3次方-1=2的2²-1,1+2=2²-1, 2020-05-21 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
等比数列{an}的前n项和Sn=2^n-1,则a1^2+a2^2+a3^2+...+an^2=前n 2020-07-30 …
问一道极限的问题若lim(an^3+bn^2+2)/(2n^2+2n+1)=1,求a和b的值 2020-07-31 …
几个数学问题,请高手回答一下.1.1^2+2^2+3^2+4^2+……(N-1)^2=[(N-1) 2020-07-31 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
一元多项式在复数域内分解成一次因式的乘积(1)x^n-C(2n,2)x^(n-1)+C(2n,4) 2020-08-03 …
1.已知n为非负整数,求证:(1+1/3)(1+1/9)(1+1/81)…(1+1/3^2n)=2/ 2020-12-07 …