早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE-BF=EF,请证明这个结论;(2)若(1)中

题目详情
(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE-BF=EF,请证明这个结论;
(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;
(3)如图③,四边形ABCD内接于 O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由.
作业帮
▼优质解答
答案和解析
(1)如图1中,结论:DE-BF=EF.理由如下:
作业帮
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵BF⊥AG于点F,DE⊥AG于点E,
∴∠AFB=∠DEA=90°,
∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,
∠AFB=∠AED
∠AFB=∠AED
AB=AD

∴△ABF≌△DAE,
∴BF=AE,AF=DE,
∵AF-AE=EF,
∴DE-BF=EF.

(2)结论EF=DE+BF.理由如下:
如图2中,
作业帮
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵BF⊥AG于点F,DE⊥AG于点E,
∴∠AFB=∠DEA=90°,
∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,
∠AFB=∠AED
∠AFB=∠AED
AB=AD

∴△ABF≌△DAE,
∴BF=AE,AF=DE,
∴EF=AF+AF=DE+BF.

(3)如图3中,结论:AC=BF+DE.理由如下:
连接BD.
作业帮
∵∠DBC+∠BDC+∠DCB=180°,∠DAE+∠ADE+∠AED=180°,
又∵∠DBC=∠DAE,∠DCB=∠AED,
∴∠ADE=∠BDC,
∵∠BDC=∠BAF,
∴∠ADE=∠BAF,∵AD=AB,∠AED=∠AFB,
∴△ADE≌△BAF,
∴AE=BF,
∵AD=AB,
∴∠ADB=∠ABD=∠ACD,
∵∠ADE=∠CDB,
∴∠CDE=∠ADB,
∴∠EDC=∠ECD,
∴DE=CE,
∴AC=BF+DE.