早教吧作业答案频道 -->数学-->
3+33+333+...+3333+33333+333333+3333333+33333333+33333333的简便方法怎么
题目详情
3+33+333+...+3333+33333+333333+3333333+33333333+
33333333的简便方法怎么
33333333的简便方法怎么
▼优质解答
答案和解析
(1)3+33+333+3333+33333+333333+3333333+33333333+333333333
=3*1+11*3+111*3+1111*3+.+111111111*3
∵1+11=12
1+11+111=123
1+11+111+1111=1234
1+11+111+1111+11111=12345
∴总结出规律位数为最后一个加数的位数,再按照除0,以外的自然数,从小到大排列
=3*(1+11+111+...+111111111)
=3*123456789
=370370367
按照规律最后一个加数应为9个1,你打成了8个1
(2)3+33+333+3333+...+333333333
=1/3*(3*3+33*3+333*3+...+333333333*3)
=1/3*(9+99+999+9999+...+999999999)
=1/3*[(10-1)+(100-1)+(1000000000-1)]
=1/3*1111111110-1
=370370370-1
=370370367
运用了乘法分配率
=3*1+11*3+111*3+1111*3+.+111111111*3
∵1+11=12
1+11+111=123
1+11+111+1111=1234
1+11+111+1111+11111=12345
∴总结出规律位数为最后一个加数的位数,再按照除0,以外的自然数,从小到大排列
=3*(1+11+111+...+111111111)
=3*123456789
=370370367
按照规律最后一个加数应为9个1,你打成了8个1
(2)3+33+333+3333+...+333333333
=1/3*(3*3+33*3+333*3+...+333333333*3)
=1/3*(9+99+999+9999+...+999999999)
=1/3*[(10-1)+(100-1)+(1000000000-1)]
=1/3*1111111110-1
=370370370-1
=370370367
运用了乘法分配率
看了 3+33+333+...+3...的网友还看了以下:
数学疑问…………为虾米10/3=0.33333333……而0.33333333……*3=0.999 2020-05-14 …
小数运算的速算和简算,1.2121212÷3.303033.3+3.33+3.333+3.3333 2020-05-16 …
阅读下列材料:设x=0.•3=0.333…①,则10x=3.333…②,则由②-①得:9x=3,即 2020-06-22 …
阅读下列材料:设x=0.•3=0.333…①,则10x=3.333…②,则由②-①得:9x=3,即 2020-06-22 …
设x=0.3是无限循环小数=0.333...①,则10x=3.333...②,则②-①得9x=3, 2020-06-27 …
333…3*333…34前面的333…3是一百个3,后面的333……34中有99个3 2020-07-19 …
∵a=ba×c=b×c∴1/3=3.333……1/3×3=1则3.333……×3=1?上面等式“3 2020-07-19 …
0.3333……大于三分之一吗?还有本题错吗?错在哪里?0.333无限循环<三分之一设0.333无 2020-07-25 …
阅读下列材料:设x=0.•3=0.333…①,则10x=3.333…②,则由②-①得:9x=3,即x 2020-10-31 …
先阅读,后解题:把循环小数化成分数的方法:设x=0.•3=0.333…,则10x=3.333…,即: 2021-01-22 …