早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)求证:△APQ∽△BCP;(2)当△CDQ≌△CPQ时,求AQ的长;(3)取CQ的中点M

题目详情
如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
作业帮
(1)求证:△APQ∽△BCP;
(2)当△CDQ≌△CPQ时,求AQ的长;
(3)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.
▼优质解答
答案和解析
(1)证明:作业帮由翻转变换的性质可知,∠QPC=∠D=90°,
∴∠APQ+∠BPC=90°,又∠BCP+∠BPC=90°,
∴∠APQ=∠BCP,又∠A=∠B=90°,
∴△APQ∽△BCP;
(2)由翻转变换的性质可知,CP=CD=5,QD=QP,
∴BP=
PC2-CB2
=4,
∴AP=1,
设AQ=x,DQ=QP=3-x,
由勾股定理得,(3-x)2=x2+1,
解得,x=
4
3
,即AQ的长为
4
3

(3)作EM⊥DC于M,延长EM交AB于F,则MF⊥AB,
∵∠QPC=∠QDC=90°,M是CQ的中点,
∴DM=
1
2
QC,PM=
1
2
QC,
∴MQ=MP,
∵∠DMP=∠MED=∠MFP=90°,
∴∠MDE=∠PMF,
在△MED和△PFM中,
∠MDE=∠PMF
∠MED=∠PFM
MD=MP

∴△MED≌△PFM,
∴DE=MF,
∴DE+EM=MF+ME=BC=3,
设EM=x,则DE=3-x,DQ=2x,
由DM=
1
2
QC得,
x2+(3-x)2
=
1
2
×
52+4x2

解得,x1=
1
2
,x2=
11
2
(舍去),
则DQ=2x=1,
∴AQ=AD-DQ=2.