早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•抚顺)如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明

题目详情
(2010•抚顺)如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
▼优质解答
答案和解析
(1)DF与BE互相垂直且相等.
证明:延长DF分别交AB、BE于点P、G(1分)
在正方形ABCD和等腰直角△AEF中
AD=AB,AF=AE,
∠BAD=∠EAF=90°
∴∠FAD=∠EAB
∴△FAD≌△EAB(2分)
∴∠AFD=∠AEB,DF=BE(3分)
∵∠AFD+∠AFG=180°,
∴∠AEG+∠AFG=180°,
∵∠EAF=90°,
∴∠EGF=180°-90°=90°,
∴DF⊥BE(5分)

(2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.(7分)
延长DF交EB于点H,
∵AD=kAB,AF=kAE
AD
AB
=k,
AF
AE
=k
AD
AB
=
AF
AE

∵∠BAD=∠EAF=a
∴∠FAD=∠EAB
∴△FAD∽△EAB(9分)
DF
BE
AF
AE
=k
∴DF=kBE(10分)
∵△FAD∽△EAB,
∴∠AFD=∠AEB,
∵∠AFD+∠AFH=180°,
∴∠AEH+∠AFH=180°,
∵∠EAF=90°,
∴∠EHF=180°-90°=90°,
∴DF⊥BE(5分)

(3)不改变.DF=kBE,β=180°-a.(7分)
证法(一):延长DF交EB的延长线于点H,
∵AD=kAB,AF=kAE
AD
AB
=k,
AF
AE
=k
AD
AB
=
AF
AE

∵∠BAD=∠EAF=a
∴∠FAD=∠EAB
∴△FAD∽△EAB(9分)
DF
BE
AF
AE
=k
∴DF=kBE(10分)
由△FAD∽△EAB得∠AFD=∠AEB
∵∠AFD+∠AFH=180°
∴∠AEB+∠AFH=180°
∵四边形AEHF的内角和为360°,
∴∠EAF+∠EHF=180°
∵∠EAF=α,∠EHF=β
∴a+β=180°∴β=180°-a(12分)

证法(二):DF=kBE的证法与证法(一)相同
延长DF分别交EB、AB的延长线于点H、G.由△FAD∽△EAB得∠ADF=∠ABE
∵∠ABE=∠GBH,∴∠ADF=∠GBH,
∵β=∠BHF=∠GBH+∠G∴β=∠ADF+∠G.
在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=a
∴a+β=180°∴β=180°-a(12分)

证法(三):在平行四边形ABCD中AB∥CD可得到∠ABC+∠C=180°
∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH
在△BHP、△CDP中,由三角形内角和等于180°可得∠C+∠CDP=∠CBH+∠BHP
∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP
∴∠EBA+∠CDP=∠BHP
由△FAD∽△EAB得∠ADP=∠EBA
∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP
∵∠BAD+∠ADC=180°,∠BAD=a,∠BHP=β
∴a+β=180°∴β=180°-a(12分)
(有不同解法,参照以上给分点,只要正确均得分.)
看了 (2010•抚顺)如图所示,...的网友还看了以下: