早教吧作业答案频道 -->数学-->
∫sin(πt)[cos(2nπt)-sin(2nπt)]dt答案是多少,重分酬谢
题目详情
∫sin(πt)[cos(2nπt)-sin(2nπt)]dt 答案是多少,重分酬谢
▼优质解答
答案和解析
答案:
[-cos(πt+2nπt)]/[2(π+2nπ)]+[-cos(πt-2nπt)]/[2(π-2nπ)]-sin(πt-2nπt)/[2(πt-2nπ)]+sin(πt+2nπt)/[2(πt+2nπ)]
∫sin(πt)[cos(2nπt)-sin(2nπt)]dt
=∫sin(πt)cos(2nπt)dt -∫sin(πt)sin(2nπt)dt
= ∫[sin(πt+2nπt)/2 +sin(πt-2nπt)/2]dt-∫[cos(πt-2nπ)/2-cos(πt+2nπ)/2]
= ∫[sin(πt+2nπt)/2]dt +∫[sin(πt-2nπt)/2]dt-∫[cos(πt-2nπ)/2]dt+∫[cos(πt+2nπ)/2]
=[-cos(πt+2nπt)]/[2(π+2nπ)]+[-cos(πt-2nπt)]/[2(π-2nπ)]-sin(πt-2nπt)/[2(πt-2nπ)]+sin(πt+2nπt)/[2(πt+2nπ)]
[-cos(πt+2nπt)]/[2(π+2nπ)]+[-cos(πt-2nπt)]/[2(π-2nπ)]-sin(πt-2nπt)/[2(πt-2nπ)]+sin(πt+2nπt)/[2(πt+2nπ)]
∫sin(πt)[cos(2nπt)-sin(2nπt)]dt
=∫sin(πt)cos(2nπt)dt -∫sin(πt)sin(2nπt)dt
= ∫[sin(πt+2nπt)/2 +sin(πt-2nπt)/2]dt-∫[cos(πt-2nπ)/2-cos(πt+2nπ)/2]
= ∫[sin(πt+2nπt)/2]dt +∫[sin(πt-2nπt)/2]dt-∫[cos(πt-2nπ)/2]dt+∫[cos(πt+2nπ)/2]
=[-cos(πt+2nπt)]/[2(π+2nπ)]+[-cos(πt-2nπt)]/[2(π-2nπ)]-sin(πt-2nπt)/[2(πt-2nπ)]+sin(πt+2nπt)/[2(πt+2nπ)]
看了 ∫sin(πt)[cos(2...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
一道奇怪的极限题lim1/n[(1-1/n)^2+(1-2/n)^2+...+(1-(n-1)/n 2020-05-14 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
有一些自然数n,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n是2的倍数. 2020-05-16 …
n(n-1)/2和n(n+1)/2有什么不同?1+2+3+4+...+(n-1)=n(n-1)/2 2020-05-16 …
参数已知点A(√3,0)及圆C:x^2+y^2=4上一动点Q,线段AQ的中垂线交OQ于点P(1). 2020-05-17 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
有关数列极限的证明方法问题如证明n-->∞时,[sqrt(n^2+a^2)]/n-->1,能否用放 2020-06-05 …
数列证明题(在线等,完成后在多给分)下面的a(1),a(2),.a(n)都是数组的项.a(n)*2 2020-06-06 …