早教吧 育儿知识 作业答案 考试题库 百科 知识分享

∫sin(πt)[cos(2nπt)-sin(2nπt)]dt答案是多少,重分酬谢

题目详情
∫sin(πt)[cos(2nπt)-sin(2nπt)]dt 答案是多少,重分酬谢
▼优质解答
答案和解析
答案:
[-cos(πt+2nπt)]/[2(π+2nπ)]+[-cos(πt-2nπt)]/[2(π-2nπ)]-sin(πt-2nπt)/[2(πt-2nπ)]+sin(πt+2nπt)/[2(πt+2nπ)]
∫sin(πt)[cos(2nπt)-sin(2nπt)]dt
=∫sin(πt)cos(2nπt)dt -∫sin(πt)sin(2nπt)dt
= ∫[sin(πt+2nπt)/2 +sin(πt-2nπt)/2]dt-∫[cos(πt-2nπ)/2-cos(πt+2nπ)/2]
= ∫[sin(πt+2nπt)/2]dt +∫[sin(πt-2nπt)/2]dt-∫[cos(πt-2nπ)/2]dt+∫[cos(πt+2nπ)/2]
=[-cos(πt+2nπt)]/[2(π+2nπ)]+[-cos(πt-2nπt)]/[2(π-2nπ)]-sin(πt-2nπt)/[2(πt-2nπ)]+sin(πt+2nπt)/[2(πt+2nπ)]