早教吧作业答案频道 -->数学-->
已知抛物线C:y=(x+1)^2与圆M:(x-1)^2+(y-1/2)^2=r^2有一个公共点A,且在A处两曲线的切线为同一直线l设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离
题目详情
已知抛物线C:y=(x+1)^2与圆M:(x-1)^2+(y-1/2)^2=r^2有一个公共点A,
且在A处两曲线的切线为同一直线l 设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D 到l的距离
且在A处两曲线的切线为同一直线l 设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D 到l的距离
▼优质解答
答案和解析
1)设A(n,(n+1)^2),则l的斜率k1=2n+2,
AM的斜率k2=[1/2-(n+1)^2]/(1-n),
由l为圆的切线,所以k1*k2=-1,化简整理得:n(n^2+3n+3)=0
解得:n=0,所以A(0,1),把A带入(x-1)^2+(y-1/2)^2=r^2得:r=√5/2
2)设C的一个切点Q(a,(a+1)^2)
从而此直线斜率k=2a+2,
把Q点带入解得:此直线的方程为:2(a+1)x+1-a^2-y=0
而此直线再与圆M相切,则圆心到直线的距离d=√5/2
由点到直线的距离公式:绝对值(2a+5/2-a^2)/√[1+(2a+2)^2]=√5/2
两边平方再化简得:a^2(a^2-4a-5)=0
从而解得a=0,或a=2-√10,或a=2+√10,其中a=0时直线为l
把a=2-√10,a=2+√10,分别带入直线方程:2(a+1)x+1-a^2-y=0
得:y=2(2-√10)x-13+4√10,
y=2(2+√10)x-13-4√10
联立上面两个方程解得;x=2,y=-1
即D(2,-1),由a=0得l:2x+1-y=0
所以D到l的距离d=绝对值[2*2+1-(-1)]/√(2^2+1)=6√5/5
AM的斜率k2=[1/2-(n+1)^2]/(1-n),
由l为圆的切线,所以k1*k2=-1,化简整理得:n(n^2+3n+3)=0
解得:n=0,所以A(0,1),把A带入(x-1)^2+(y-1/2)^2=r^2得:r=√5/2
2)设C的一个切点Q(a,(a+1)^2)
从而此直线斜率k=2a+2,
把Q点带入解得:此直线的方程为:2(a+1)x+1-a^2-y=0
而此直线再与圆M相切,则圆心到直线的距离d=√5/2
由点到直线的距离公式:绝对值(2a+5/2-a^2)/√[1+(2a+2)^2]=√5/2
两边平方再化简得:a^2(a^2-4a-5)=0
从而解得a=0,或a=2-√10,或a=2+√10,其中a=0时直线为l
把a=2-√10,a=2+√10,分别带入直线方程:2(a+1)x+1-a^2-y=0
得:y=2(2-√10)x-13+4√10,
y=2(2+√10)x-13-4√10
联立上面两个方程解得;x=2,y=-1
即D(2,-1),由a=0得l:2x+1-y=0
所以D到l的距离d=绝对值[2*2+1-(-1)]/√(2^2+1)=6√5/5
看了 已知抛物线C:y=(x+1)...的网友还看了以下:
已知椭圆D:x24+y2=1与圆M:x2+(y-m)2=9(m∈R),双曲线G与椭圆D有相同的焦点 2020-04-08 …
已知圆M:(x+3a)2+y2=16a2(a>0)及定点N(3a,0),点P是圆M上的动点,点G在 2020-05-15 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左.右焦点分别为F1,F2,其半焦距为c 2020-05-15 …
关于圆的方程 高二解析几何已知圆M:(x+cosθ)^2+(y-sinθ)^2=1,直线L:y=K 2020-05-16 …
已知点A是定圆M所在平面上的一定点,点P是圆M上的动点,若线段PA的垂直平分线交直线PM于点Q,则 2020-05-17 …
已知直线L:x+y-9=0和圆M:2x2+2y2-8x-8y-1=0,点A在直线L上,B,C为圆M 2020-06-19 …
已知椭圆C:x2a2+y2b2=1的左顶点为A(-3,0),左焦点恰为圆x2+2x+y2+m=0( 2020-06-21 …
已知椭圆M:的面积为πab,且M包含于平面区域Ω:内,向Ω内随机投一点Q,点Q落在椭圆M内的概率为 2020-06-21 …
如图所示,已知椭圆M:y2a2+x2b2=1(a>b>0)的四个顶点构成边长为5的菱形,原点O到直 2020-06-21 …
已知圆M的方程为:x²+y²-2x-2y-6=0,以坐标原点为圆心的圆O与圆M相切已知圆M的方程为 2020-06-27 …