早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2005•浙江)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.(Ⅰ)当k=12时,求直线PA与平面PBC所成角的大小;(Ⅱ)当k取何值时,O在平面PBC内的射影恰

题目详情
(2005•浙江)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
1
2
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?
▼优质解答
答案和解析
方法一:
(Ⅰ)∵AB⊥BC,OA=OC,∴OA=OB=OC,又∵OP⊥平面ABC,∴PA=PB=PC.取BC中点E,连接PE,则BC⊥平面POE作OF⊥PE于F,连接DF,则OF⊥平面PBC∴∠ODF是OD与平面PBC所成的角.
又OD∥PA,∴PA与平面PBC所成的角的大小等于∠ODF,在Rt△ODG中,sin∠ODF=
OF
OD
=
210
30

∴PA与平面PBC所成角为arcsin
210
30


(Ⅱ)由(I)知,OF⊥平面PBC,∴F是O在平面PBC内的射影.
∵D是PC的中点,
若点F是△PBC的重心,则B,F,D三点共线,
∴直线OB在平面PBC内的射影为直线BD,∵OB⊥PC,∴PC⊥BD,∴PB=BC,即k=1.
反之,当k=1时,三棱锥O-PBC为正三棱锥,
∴O在平面PBC内的射影为△PBC的重心.
方法二:∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.
以O为原点,射线OP为非负z轴,建立空间直角坐标系O-xyz(如图).
设AB=a,则A(
2
2
a,0,0),B(0,
2
2
a,0),C(-
2
2
a,0,0),
设OP=h,则P(0,0,h)
(Ⅰ)∵k=
1
2
,即PA=2a,∴h=
作业帮用户 2016-11-21
我是二维码 扫描下载二维码