早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.19

题目详情
已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为(  )
A. 25
B. 24
C. 20
D. 19
▼优质解答
答案和解析
解法一:设两个数列相同的项按原来的前后次序组成的新数列为{an},则a1=11
∵数列5,8,11,…与3,7,11,…公差分别为3与4,
∴{an}的公差d=3×4=12,
∴an=11+12(n-1)=12n-1.
又∵5,8,11,…与3,7,11,…的第100项分别是302与399,
∴an=12n-1≤302,即n≤25.5.
又∵n∈N*,
∴两个数列有25个相同的项.
故选A
解法二:设5,8,11,与3,7,11,分别为{an}与{bn},则an=3n+2,bn=4n-1.
设{an}中的第n项与{bn}中的第m项相同,
即3n+2=4m-1,∴n=
4
3
m-1.
又m、n∈N*,可设m=3r(r∈N*),得n=4r-1.
根据题意得 1≤3r≤100 1≤4r-1≤100  解得
1
2
≤r≤
101
4

∵r∈N*
从而有25个相同的项
故选A