早教吧作业答案频道 -->其他-->
(2012•赤峰)如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.
题目详情
(2012•赤峰)如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.
(1)求证:四边形CDOF是矩形;
(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.
(1)求证:四边形CDOF是矩形;
(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.
▼优质解答
答案和解析
(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),
∴∠AOC=2∠COD,∠COB=2∠COF,
∵∠AOC+∠BOC=180°,
∴2∠COD+2∠COF=180°,
∴∠COD+∠COF=90°,
∴∠DOF=90°;
∵OA=OC,OD平分∠AOC(已知),
∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质),
∴∠CDO=90°,
∵CF⊥OF,
∴∠CFO=90°
∴四边形CDOF是矩形;
(2)当∠AOC=90°时,四边形CDOF是正方形;
理由如下:∵∠AOC=90°,AD=DC,
∴OD=DC;
又由(1)知四边形CDOF是矩形,则
四边形CDOF是正方形;
因此,当∠AOC=90°时,四边形CDOF是正方形.
∴∠AOC=2∠COD,∠COB=2∠COF,
∵∠AOC+∠BOC=180°,
∴2∠COD+2∠COF=180°,
∴∠COD+∠COF=90°,
∴∠DOF=90°;
∵OA=OC,OD平分∠AOC(已知),
∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质),
∴∠CDO=90°,
∵CF⊥OF,
∴∠CFO=90°
∴四边形CDOF是矩形;
(2)当∠AOC=90°时,四边形CDOF是正方形;
理由如下:∵∠AOC=90°,AD=DC,
∴OD=DC;
又由(1)知四边形CDOF是矩形,则
四边形CDOF是正方形;
因此,当∠AOC=90°时,四边形CDOF是正方形.
看了 (2012•赤峰)如图,点O...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
O、A、B、C为空间四个点,又OA、OB、OC为空间的一个基底,则()A.O、A、B、C四点不共线 2020-05-14 …
如图四、已知数轴上A、B、C、D四点,对应的实数都是整数,如果A对应的实数为a、B为b、且b-2a 2020-05-15 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过3 2020-06-19 …
抛物线y=x2+bx+c(b小于等于0)的图像与x轴交于A`B两点,与y轴交于C点,其中点A坐标为 2020-06-29 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过3 2020-07-08 …
在菱形ABCD中,∠A=60度,点P主直线AB上一点,过点P作PM垂直直线AD于M,作PN垂直于N 2020-07-22 …