早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,有4个动点P,Q,E,F分别从正方形ABCD的4个顶点出发,分别沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.(1)判定四边形PQEF的形状,并说明理由;(2)PE是否总是经过某

题目详情
如图所示,有4个动点P,Q,E,F分别从正方形ABCD的4个顶点出发,分别沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.
(1)判定四边形PQEF的形状,并说明理由;
(2)PE是否总是经过某一定点?并说明理由;
(3)若正方形ABCD的边长为2,求四边形PQEF的最大面积和最小面积,并指出它的顶点分别位于何处.
▼优质解答
答案和解析
(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,
∴BP=QC=ED=FA.
又∵∠BAD=∠B=∠BCD=∠D=90°,
∴△AFP≌△BPQ≌△CQE≌△DEF.
∴FP=PQ=QE=EF,∠APF=∠PQB.
∵∠FPQ=90°,
∴四边形PQEF为正方形;

(2)连接PE交AC于O,连接PC、AE,
∵AP平行且等于EC,
∴四边形APCE为平行四边形.
∴O为对角线AC的中点,
∴对角线PE总过AC的中点;

(3)正方形ABCD与正方形PQEF的对角线交点是重合的,
当OP⊥AB时,四边形PQEF面积最小,为原正方形面积的一半,即为
1
2
×2×2=2;
当P与顶点B重合时,面积最大,其最大面积等于正方形ABCD的面积即为:2×2=4.