早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判别它是否为极值点.

题目详情
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判别它是否为极值点.
▼优质解答
答案和解析
对方程两边求导,得
3y2y-2yy'+xy'+y-x=0(1)
令y’=0,得y=x,代入原方程 2x3-x2-1=0
从而解得唯一的驻点为x=1,y=1
在(1)式两边对x求导得:
(3y2-2y+x)y+2(3y-1)y'2+2y'-1=0
y|(1,1)=
1
2
>0
故驻点x=1是y=y(x)的极小值点