早教吧 育儿知识 作业答案 考试题库 百科 知识分享

三角形ABC中,三条内角平分线AD,BE,CF相交于点G,GH垂直于BC于H点,求证:角BGD=角HGC.

题目详情
三角形ABC中,三条内角平分线AD,BE,CF相交于点G,GH垂直于BC于H点,求证:角BGD=角
HGC.
▼优质解答
答案和解析
证明:∵∠AEG=∠EBC+∠ACB= 1/2∠ABC+∠ACB,
∴∠AGE=180°-(∠DAC+∠AEG)
=180°-[1/2∠BAC+1/2∠ABC+∠ACB]
=180°-[1/2(∠BAC+∠ABC)+∠ACB]
=180°-[1/2 (180°-∠ACB)+∠ACB]
=180°-[90°+1/2∠ACB]
=90°-1/2∠ACB,
∴∠BGD=∠AGH=90°-1/2∠ACB,
又∵在直角△GCH中,∠CGH=90°-∠GCD=90°-1/2 ∠ACB,
∴∠BGD=∠CGH.
希望采纳