早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,AF与BG交于点E.(1)求证:AF⊥BG,DF=CG;(2)若AB=10,AD=6,AF=8,求FG和BG的长度.

题目详情
如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,
AF与BG交于点E.
(1)求证:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的长度.
▼优质解答
答案和解析
(1)证明:∵AF平分∠BAD,
∴∠DAF=∠BAF=
1
2
∠BAD.
∵BG平分∠ABC,
∴∠ABG=∠CBG=
1
2
∠ABC.
∵四边形ABCD平行四边形,
∴AD∥BC,AB∥CD,AD=BC,
∴∠BAD+∠ABC=180°,
即2∠BAF+2∠ABG=180°,
∴∠BAF+∠ABG=90°.
∴∠AEB=180°-(∠BAF+∠ABG)=180°-90°=90°.
∴AF⊥BG;
∵AB∥CD,
∴∠BAF=∠AFD,
∴∠AFD=∠DAF,
∴DF=AD,
∵AB∥CD,
∴∠ABG=∠CGB,
∴∠CBG=∠CGB,
∴CG=BC,
∵AD=BC.
∴DF=CG;

(2)∵DF=AD=6,
∴CG=DF=6.
∴CG+DF=12,
∵四边形ABCD平行四边形,
∴CD=AB=10.
∴10+FG=12,
∴FG=2,
过点B作BH∥AF交DC的延长线于点H.
∴∠GBH=∠AEB=90°.
∵AF∥BH,AB∥FH,
∴四边形ABHF为平行四边形.
∴BH=AF=8,FH=AB=10.
∴GH=FG+FH=2+10=12,
∴在Rt△BHG中:BG=
GH2−BH2
=4
5

∴FG的长度为2,BG的长度为4
5