早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中,点A的坐标为(4,0),直线l:y=-2x+4分别与x轴,y轴相交于B、C两点.(1)点B的坐标为,点C的坐标为;(2)在直线l上是否存在点P,使得△APO为直角三

题目详情
如图,在平面直角坐标系中,点A的坐标为(4,0),直线l:y=-2x+4分别与x轴,y轴相交于B、C两点.
(1)点B的坐标为______,点C的坐标为______;
(2)在直线l上是否存在点P,使得△APO为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若直线y=-2x+b上始终存在4个点P,使得△APO为直角三角形,求出b的取值范围.(直接写出答案,不需说明理由)
▼优质解答
答案和解析
(1)∵y=-2x+4,
∴当y=0时,x=2,∴B(2,0),
当x=0时,y=4,∴C(0,4);

(2)△APO为直角三角形时,分三种情况:
①如果∠AOP=90°,那么P与C重合,此时P1(0,4);
②如果∠OAP=90°,那么AP⊥OA,P点横坐标与A点横坐标相同,为4,
当x=4时,y=-4,此时P2(4,-4);
③如果∠OPA=90°,那么OP2+PA2=OA2
设P点坐标为(x,-2x+4),则x2+(-2x+4)2+(x-4)2+(-2x+4)2=42
整理,得5x2-20x+16=0,
解得x1=2-
2
5
5
,x2=2+
2
5
5

此时P3(2-
2
5
5
4
5
5
)、P4(2+
2
5
5
,-
4
5
5
).
综上所述,在直线l上存在点P1(0,4)、P2(4,-4),P3(2-
2
5
作业帮用户 2017-10-10
问题解析
(1)由直线l的解析式y=-2x+4,根据x轴上的点纵坐标为0,y轴上的点横坐标为0即可求出点B与点C的坐标;
(2)△APO为直角三角形时,分三种情况进行讨论:①如果∠AOP=90°,那么P与C重合,此时P1(0,4);②如果∠OAP=90°,那么P点横坐标与A点横坐标相同,此时P2(4,-4);③如果∠OPA=90°,根据勾股定理得出OP2+PA2=OA2,设P点坐标为(x,-2x+4),根据两点间的距离公式列出方程x2+(-2x+4)2+(x-4)2+(-2x+4)2=42,解方程求出此时P3(2-
2
5
5
4
5
5
)、P4(2+
2
5
5
,-
4
5
5
);
(3)△APO为直角三角形时,分三种情况进行讨论:①如果∠AOP=90°,那么P1(0,b);②如果∠OAP=90°,那么P2(4,b-8);③如果∠OPA=90°,那么OP2+PA2=OA2,设P点坐标为(x,-2x+b),则x2+(-2x+b)2+(x-4)2+(-2x+b)2=42,根据直线y=-2x+b上始终存在4个点P,使得△APO为直角三角形,得出方程5x2+(-4b-4)x+b2=0有两个不相等的实数根,则判别式△>0,由此求出b的取值范围.
名师点评
本题考点:
一次函数综合题.
考点点评:
本题是一次函数综合题,考查了函数图象上点的坐标特征,直角三角形的性质,两点间的距离公式,一元二次方程根与系数的关系,综合性较强,难度适中.利用分类讨论、方程思想是解题的关键.
我是二维码 扫描下载二维码