早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=,(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证

题目详情
已知函数f(x)=
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x2<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,)是否是函数f(x)的“上线区间”(不必证明).
▼优质解答
答案和解析
(Ⅰ)当x≤1时,由f′(x)=-2x+1=0得x=),(1,+∞);
单调减区间为(,1).
f(x)的极大值为f()=,极小值为f(1)=0.
(Ⅱ)∵x1<1∴f′(x1)=-2x1+1
∴直线PQ的方程为y-f(x1)=f′(x1)(x-x1
即y-(-x12+x1)=(-2x1+1)(x-x1),y=(-2x1+1)x+x12
∵x2>1∴f′(x2)=
∴直线PQ的方程为y-f(x2)=f′(x2)(x-x2
即y-lnx2=(x-x2),y=x+lnx2-1②
∵①②表示同一条直线方程,∴
消去x1,得[(1-)]2=lnx2-1,即--4lnx2+5=0
令φ(x)=--4lnx+5(x>1),则x2是φ(x)图象与x轴交点的横坐标.
∵当x>1时,φ′(x)=-
∴φ(x)在(1,+∞)上是减函数
又φ(3)=
φ(4)=
∴3<x2<4
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l下方或直线l上,则称区间I为函数g(x)的“上线区间”,
所以(-∞,)不是函数f(x)的“上线区间”.