早教吧作业答案频道 -->数学-->
当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明当n>2时,就找不到满足xn+yn=zn的正整数解,怎样
题目详情
当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明当n>2时,就找不到满足xn+yn=zn的正整数解,怎样证明
▼优质解答
答案和解析
当整数 n > 2 时,对于所有正整数 x,y,z
方程x^n + y^n = z^n在n>2时没有非零的整数解.
这个定理,本来又称费马猜想,由17世纪法国数学家费马提出.费马宣称他已找到一个绝妙证明,只可惜这里的文字框空白太小了,写不下.但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯 和他的学生理查·泰勒于1995年成功证明.证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明.
方程x^n + y^n = z^n在n>2时没有非零的整数解.
这个定理,本来又称费马猜想,由17世纪法国数学家费马提出.费马宣称他已找到一个绝妙证明,只可惜这里的文字框空白太小了,写不下.但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯 和他的学生理查·泰勒于1995年成功证明.证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明.
看了 当n>2时,就找不到满足xn...的网友还看了以下:
已知二次函数F(x)=a(a+1)x*X-(2a+1)x+1,a∈N+1.求函数F(X)的图像与X 2020-05-13 …
1在等差数列an中,a16+a17+a18=a9=-36,其前n项和为sn.(1)求sn的最小值, 2020-05-14 …
如图,已知在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为 2020-06-13 …
几道数学题...-n①若n∈N+,求证:√(n+1)²+1-(n-1)<√n²+1-n(空开处说明 2020-06-27 …
有钠、镁、铝各nmol,分别与等体积、均与含xmolHCl的盐酸反应,下列说法不正确的是()A.x 2020-06-29 …
通过对两样有机物进行DNA对比,确认是同属一个个体需要多长时间时间?以人类为例假设警察捉到嫌疑犯, 2020-07-12 …
已知:四边形ABCD中,∠DAB=120°,对角线AC平分∠DAB(1)当∠B=∠D=90°时.求 2020-07-18 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
Excel有没有类似CASE函数,即对某单元格为值1时运行公式A;为值2时运行公式B.为值N时运行公 2020-11-07 …
数列极限的定义对于任意的ε,总是存在一个N,使得当n>N时,总是有|an-a|对于任意的ε总是存在一 2020-12-03 …