早教吧作业答案频道 -->数学-->
sin^2A+sin^2B+sin^2C-2cosAcosBcosC=2sina^2+sinb^2+sinc^2-2cosacosbcosc=3-(cosa^2+cosb^2+cosc^2+2cosacosbcosc)=3-{cosa*[cosa+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)+2]}=3-{-cos(b+c)*[-cos(b+c)+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)]+1}=3-{-cos(b+c)*cos(b-c)+co
题目详情
sin^2A+sin^2B+sin^2C-2cosAcosBcosC=2
sina^2+sinb^2+sinc^2-2cosacosbcosc
=3-(cosa^2+cosb^2+cosc^2+2cosacosbcosc)
=3-{cosa*[cosa+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)+2]}
=3-{-cos(b+c)*[-cos(b+c)+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)]+1}
=3-{-cos(b+c)*cos(b-c)+cos(b+c)*cos(b-c)+1}
=2
除了这种方法之外还有没有别的方法?
sina^2+sinb^2+sinc^2-2cosacosbcosc
=3-(cosa^2+cosb^2+cosc^2+2cosacosbcosc)
=3-{cosa*[cosa+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)+2]}
=3-{-cos(b+c)*[-cos(b+c)+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)]+1}
=3-{-cos(b+c)*cos(b-c)+cos(b+c)*cos(b-c)+1}
=2
除了这种方法之外还有没有别的方法?
▼优质解答
答案和解析
有将sin2B+sin2C移到另一侧和2联立用三角函数的基本关系化成角B、C的余弦,进而再根据A=π-B-C将cosA化为角B、C的关系即可证.
证明:(1)要证sin^2A+sin^2B+sin^2C-2cosAcosBcosC=2成立
即证sin2A=2-sin2B-sin2C+2cosAcosBcosC成立
又因为2-sin2B-sin2C+2cosAcosBcosC=cos2B+cos2C+2cos(π-B-C)cosBcosC
=cos2B+cos2C-2cos(B+C)cosBcosC=cos2B+cos2C-2(cosBcosC-sinBsinC)cosBcosC
=cos2B+cos2C-2cos2Bcos2C+2sinBsinCcosBcosC
=(cos2B-cos2Bcos2C)+(cos2C-cos2Bcos2C)+2sinBsinCcosBcosC
=cos2Bsin2C+cos2Csin2C+2sinBsinCcosBcosC
=(cosBsinC+cosCsinC)2
=sin2(B+C)=sin2(π-A)=sin2A
即证,有点乱,仔细看看- -
如有问题请追问或Hi我
证明:(1)要证sin^2A+sin^2B+sin^2C-2cosAcosBcosC=2成立
即证sin2A=2-sin2B-sin2C+2cosAcosBcosC成立
又因为2-sin2B-sin2C+2cosAcosBcosC=cos2B+cos2C+2cos(π-B-C)cosBcosC
=cos2B+cos2C-2cos(B+C)cosBcosC=cos2B+cos2C-2(cosBcosC-sinBsinC)cosBcosC
=cos2B+cos2C-2cos2Bcos2C+2sinBsinCcosBcosC
=(cos2B-cos2Bcos2C)+(cos2C-cos2Bcos2C)+2sinBsinCcosBcosC
=cos2Bsin2C+cos2Csin2C+2sinBsinCcosBcosC
=(cosBsinC+cosCsinC)2
=sin2(B+C)=sin2(π-A)=sin2A
即证,有点乱,仔细看看- -
如有问题请追问或Hi我
看了 sin^2A+sin^2B+...的网友还看了以下:
对我来说的一道高难度的数学题题目“当a=2,b=-2时,求多项式3a^3b^3-1/2a^2b+b 2020-04-26 …
-1/2a^2b+2a^3+4a^2b-5a^2b-5a^3,其中a=-1,b=-1/3 2020-05-16 …
数学:计算题和化简求值(1)(9a^3b^2-12a^2b^3+3ab^4)/(-1/2ab) ( 2020-05-16 …
“a=2b=-2时”球多项式3a^3b^3-0.5a^2b+b-(4a^3b^3-0.25a^2b 2020-06-06 …
sin^2A+sin^2B+sin^2C-2cosAcosBcosC=3是怎么来的,明白了 2020-07-21 …
sin^2A+sin^2B+sin^2C-2cosAcosBcosC=2sina^2+sinb^2 2020-07-21 …
实数(812:6:22)先阅读第(1)小题的解法,再解答第(2)小题.(1)已知a.b是有理数,并 2020-07-29 …
解三元一次方程组(1)a+b+c=04a+2b+c=09a+3b+c=4(2)c=1a-b+c=3 2020-08-03 …
去括号,合并同类项;(1)5(2x—7y)—3(4x—10y)(2)3a^2b—4ab^2—5(ab 2020-10-31 …
填空2^-3=(-3)^-2=a^-2b^2×(a^2b^-2)^-3=(3×10^-3)×(5×1 2020-12-04 …