早教吧作业答案频道 -->数学-->
(1)求过点(3,2),且与圆x^2+y^2=1相切的直线方程(2)求分别与直线y=-2x和y=1/2*x相切并且过点(3,2)的圆的方程
题目详情
(1)求 过点(3,2),且与圆x^2+y^2=1相切的直线方程
(2)求 分别与直线 y=-2x 和 y=1/2*x 相切
并且过点(3,2)的圆的方程
(2)求 分别与直线 y=-2x 和 y=1/2*x 相切
并且过点(3,2)的圆的方程
▼优质解答
答案和解析
(1)
设直线为y=k(x-3)+2
由相切知圆心到直线的距离等于半径
所以|k(0-3)+2-0|/√(k^2+1)=1
解得k=(-3±√3)/4
所以直线方程为y=(-3±√3)(x-3)/4+2
(2)分别与直线 y=-2x 和 y=x/2 相切
设圆心为(a,b)
则|2a+b|/√(4+1)=|a-2b|/√(1+4)
所以a=-3b或b=3a
当a=-3b时
代回上面的式子解得半径为|2a+b|/√(4+1)=(√5)*|b|
圆过点(3,2)
于是(a-3)^2+(b-2)^2=5b^2
联立a=-3b发现无解
当b=3a时
代回上面的式子解得半径为|2a+b|/√(4+1)=(√5)*|a|
圆过点(3,2)
于是(a-3)^2+(b-2)^2=5a^2
联立b=3a得5a^2-18a+13=0
解得a=2.6或a=1
a=2.6时b=3a=7.8,半径为(√5)*|a|=2.6√5
所以圆的方程是(x-2.6)^2+(y-7.8)^2=33.8
a=1时b=3a=3,半径为(√5)*|a|=√5
所以圆的方程是(x-1)^2+(y-3)^2=5
设直线为y=k(x-3)+2
由相切知圆心到直线的距离等于半径
所以|k(0-3)+2-0|/√(k^2+1)=1
解得k=(-3±√3)/4
所以直线方程为y=(-3±√3)(x-3)/4+2
(2)分别与直线 y=-2x 和 y=x/2 相切
设圆心为(a,b)
则|2a+b|/√(4+1)=|a-2b|/√(1+4)
所以a=-3b或b=3a
当a=-3b时
代回上面的式子解得半径为|2a+b|/√(4+1)=(√5)*|b|
圆过点(3,2)
于是(a-3)^2+(b-2)^2=5b^2
联立a=-3b发现无解
当b=3a时
代回上面的式子解得半径为|2a+b|/√(4+1)=(√5)*|a|
圆过点(3,2)
于是(a-3)^2+(b-2)^2=5a^2
联立b=3a得5a^2-18a+13=0
解得a=2.6或a=1
a=2.6时b=3a=7.8,半径为(√5)*|a|=2.6√5
所以圆的方程是(x-2.6)^2+(y-7.8)^2=33.8
a=1时b=3a=3,半径为(√5)*|a|=√5
所以圆的方程是(x-1)^2+(y-3)^2=5
看了 (1)求过点(3,2),且与...的网友还看了以下:
数学关于曲线的伸缩变换问题求曲线x^2-y^2-2x=0经过什么伸缩变换后变成曲线x'^2-16y 2020-06-03 …
7.x>0,y>0,a=x+y,b=sqrt(x^2+xy+y^2),c=msqrt(xy),求是 2020-06-12 …
高数习题求教求向量场A=(y-2z)i+(z-2x)j+(x-2y)k沿曲线τ的环流量,其中τ为曲 2020-06-15 …
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线x^2-y^2=1的离 2020-06-21 …
在曲线y=x2+x上取点P(1,2)及临近点Q(1+x,2+y),则y/x=----------- 2020-07-14 …
已知直线x-y-3=0与圆x^2+y^2-2x=0相离,在圆上求一点,使它与直线的距离最短,并求这 2020-07-22 …
已知曲线C:(5-m)x∧2+(m-2)y∧2=8(m∈R) 已知曲线C:(5-m)x∧2+(m- 2020-07-30 …
由抛物线y^2=2X与直线Y=x-4所围成的图形的面积由曲线Y=2-X^2与直线Y=2X+2围成图 2020-07-31 …
x(y+z-x)=39-2(x*x)1.解方程组y(z+x-y)=52-2(y*y)z(x+y-z) 2020-10-30 …
1.判断题x^2+y^2+6x-7=0与抛物线y^2=4x的准线的位置关系2.抛物线y^2=2px( 2020-11-01 …