早教吧作业答案频道 -->数学-->
如图所示,已知直线y=x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.(1)求这个抛物线的解析式;(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三
题目详情
如图所示,已知直线y=x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的?若存在,试求出此时点P的坐标;若不存在,请说明理由.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的?若存在,试求出此时点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)根据A、B的坐标即可求出抛物线的解析式;
(2)若等腰△MAB以AB为底边,则M必为AB的垂直平分线与抛物线的交点;根据A、B的坐标,易求出其中点的坐标,进而可求出其垂直平分线的解析式,联立抛物线的解析式即可得到M点的坐标;
(3)由于△BAC与△PAC同底不等高,那么它们的面积比等于底边的比,可过B作BF⊥AC,求出△ABC的面积后即可得到BF的长;可在BF上截取BK=BF,那么P点必为过K点且平行于AC的直线与抛物线的交点;可分别过A、F作y轴的垂线,设垂足为G、H,求出∠GAC、∠HFC的度数,从而可得到∠BNx的度数,而BN的长求得,即可得出NK的值,从而求出K点的坐标;易求出直线AC的解析式,由于过K的直线与AC平行,那么它们的斜率相同,由此可求出直线KP的解析式,联立抛物线的解析式即可求得P点的坐标.
【解析】
(1)由题意,得:,
解得;
∴抛物线的解析式为y=x2-6;
(2)如图1,取AB的中点E,则E(1,);过E作直线l垂直于AB;
∵直线AB的解析式为:y=x,∴可设直线l的解析式为y=-2x+b;
∵直线l过E(1,),则有:=-2+b,b=;
∴直线l的解析式为:y=-2x+;联立抛物线的解析式有:
,
解得,
∴M(-4+5,-10)或(-4-5,+10);
(3)过B作BF⊥AC于F,交x轴于N;
过F作FH⊥y轴于H,过A作AG⊥y轴于G;
在BF上截取BK=BF;
∵A(-4,-2),B(6,3),C(0,-6)
∴S△ABC=OC×|xB-xA|
=×6×10=30;
Rt△AGC中,AG=CG=4,则∠GAC=∠HFC=45°,AC=4;
∵∠BFC=90°,
∴∠BNx=∠BFH=90°-45°=45°;
易知BN=3,BK=BF=×=×=;
∴NK=BN-BK=;
由于∠BNx=45°,可求得K(,);
易知直线AC的解析式为:y=-x-6,过K作直线m平行于AC,可设直线m的解析式为:y=-x+h,则:
-+h=,h=;
∴直线m的解析式为y=-x+;
由于△ABC与△PAC等底不等高,
则面积比等于高的比,由于KF=BF,那么P点必为直线m与抛物线的交点,联立直线m与抛物线的解析式可得:
,
解得,;
∴P点的坐标为(5,)或(-9,).
(2)若等腰△MAB以AB为底边,则M必为AB的垂直平分线与抛物线的交点;根据A、B的坐标,易求出其中点的坐标,进而可求出其垂直平分线的解析式,联立抛物线的解析式即可得到M点的坐标;
(3)由于△BAC与△PAC同底不等高,那么它们的面积比等于底边的比,可过B作BF⊥AC,求出△ABC的面积后即可得到BF的长;可在BF上截取BK=BF,那么P点必为过K点且平行于AC的直线与抛物线的交点;可分别过A、F作y轴的垂线,设垂足为G、H,求出∠GAC、∠HFC的度数,从而可得到∠BNx的度数,而BN的长求得,即可得出NK的值,从而求出K点的坐标;易求出直线AC的解析式,由于过K的直线与AC平行,那么它们的斜率相同,由此可求出直线KP的解析式,联立抛物线的解析式即可求得P点的坐标.
【解析】
(1)由题意,得:,
解得;
∴抛物线的解析式为y=x2-6;
(2)如图1,取AB的中点E,则E(1,);过E作直线l垂直于AB;
∵直线AB的解析式为:y=x,∴可设直线l的解析式为y=-2x+b;
∵直线l过E(1,),则有:=-2+b,b=;
∴直线l的解析式为:y=-2x+;联立抛物线的解析式有:
,
解得,
∴M(-4+5,-10)或(-4-5,+10);
(3)过B作BF⊥AC于F,交x轴于N;
过F作FH⊥y轴于H,过A作AG⊥y轴于G;
在BF上截取BK=BF;
∵A(-4,-2),B(6,3),C(0,-6)
∴S△ABC=OC×|xB-xA|
=×6×10=30;
Rt△AGC中,AG=CG=4,则∠GAC=∠HFC=45°,AC=4;
∵∠BFC=90°,
∴∠BNx=∠BFH=90°-45°=45°;
易知BN=3,BK=BF=×=×=;
∴NK=BN-BK=;
由于∠BNx=45°,可求得K(,);
易知直线AC的解析式为:y=-x-6,过K作直线m平行于AC,可设直线m的解析式为:y=-x+h,则:
-+h=,h=;
∴直线m的解析式为y=-x+;
由于△ABC与△PAC等底不等高,
则面积比等于高的比,由于KF=BF,那么P点必为直线m与抛物线的交点,联立直线m与抛物线的解析式可得:
,
解得,;
∴P点的坐标为(5,)或(-9,).
看了 如图所示,已知直线y=x与抛...的网友还看了以下:
初二正方形几何题,会哪个帮忙答哪个,在线等1.如图,正方形ABCD中,F在DC上,E在BC上,且角 2020-04-27 …
1.如果三条直线共点,且两两垂直,问其中一条直线是否垂直于另两条直线所确定的平面2.已知三角形AB 2020-05-13 …
两个圆形导线一样的横截面,但是电阻率为P1和P2,让两个导线相连.如果电流I流过交接处时.求交接处 2020-05-17 …
求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.最后一提了实在求证:如 2020-05-17 …
在平面直角座标系中直线I与抛物线X的平方=2Y相交于A,B两点求如果I过点(0.3)求证向量OA* 2020-06-14 …
微积分!导数!求曲线上一点的斜率以及判断一个函数有没有切线的问题如y=x^2-4当x=1时曲线斜率 2020-07-20 …
proe里面如何求两个相交的面的相交线proe里面有一面(或一体)与另外一个体相交,如何将相交线求 2020-08-01 …
三角形ABC中,角A等于64度,如果Bp,cp中一个是内角平分线,另一个是外角平分线求角p的度数. 2020-08-02 …
已知一条直线方程,并且知道与这个直线平行的直线与原直线的距离,求这个平行的直线方程,怎么求?例如这题 2020-10-31 …
如何求两个圆的交点求圆心在直线l:x+y=0上,且过两圆C1:x^2+y^2-2x+10y-24=0 2020-10-31 …