早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若a+b+c=0,a^2+b^2+c^2=1,试求下列各式的值.(1)bc+ac+ab:(2)a^4+b^4+c^4.

题目详情
若a+b+c=0,a^2+b^2+c^2=1,试求下列各式的值.(1)bc+ac+ab:(2)a^4+b^4+c^4.
▼优质解答
答案和解析
1.
(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)
0=1+2(ab+ac+bc)
bc+ac+ab=-1/2
2.
(bc+ac+ab)^2=b^2c^2+a^2c^2+a^2b^2+2(abc^2+acb^2+bca^2)
(-1/2)^2=b^2c^2+a^2c^2+a^2b^2+2abc(a+b+c)
1/4=b^2c^2+a^2c^2+a^2b^2+0
b^2c^2+a^2c^2+a^2b^2=1/4
a^4+b^4+c^4
=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)
=1-2(b^2c^2+a^2c^2+a^2b^2
=1-2*1/4
=1-1/2
=1/2