早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)在(a,b)内连续,且limx->a+f(x)=+无穷,limx->b-f(x)=-无穷,证明f(x)在(a,b)内至少有一个零点

题目详情
设f(x)在(a,b)内连续,且limx->a+f(x)=+无穷,limx->b-f(x)=-无穷,证明f(x)在(a,b)内至少有一个零点
▼优质解答
答案和解析
因imx->a+f(x)=+无穷,故存在点c>a,使f(c)>0.又limx->b-f(x)=-无穷,故存在d(c
作业帮用户 2017-10-20