早教吧作业答案频道 -->数学-->
(2004•南平)已知:如图,A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B,设PA=m,PB=n.(1)当n=4时,求m的值;(2)⊙O上是否存在点C,使△PBC为等边三角
题目详情
(2004•南平)已知:如图,A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B,设PA=m,PB=n.
(1)当n=4时,求m的值;
(2)⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由;
(3)当m为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?
(1)当n=4时,求m的值;
(2)⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由;
(3)当m为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?
▼优质解答
答案和解析
(1)此题可有两种解法:①连接OB,利用勾股定理求解,②延长PO交⊙O于另外一点,利用切割线定理求解;
(2)若△PBC是等边三角形,则必有PB=PC,由于PB是⊙O的切线,且C在⊙O上,那么若存在符合条件的C点,则PC必与⊙O相切,且切点为C(切线长定理).若△PBC是等边三角形,则∠BPC=60°,∠BPO=30°,可连接OB,在Rt△OBP中,通过解直角三角形即可求得AP的长即m的值;
(3)若存在等腰△PBM,且以PB为底,那么M点必在线段PB的垂直平分线上,而⊙O上存在唯一点M,那么线段PB的中垂线与⊙O相切,且切点为M.连接OM,易证得四边形OBDM是正方形,则BP=2BD=2OB=4,即n=4,在Rt△OBP中,利用勾股定理即可求得OP的长,进而可得到AP即m的值.
在上面已经求得PB=4,若M能与PB构成等腰三角形(PB不一定是底边),可有两种情况考虑:
①BM=PB=4,由于⊙O的半径为2,那么过B作⊙O的直径BM,此时M点就符合题意;
②PB=PM=4,此种情况与(2)题相同,此时M、C重合,即PM与⊙O相切,且切点为M.
由于BM=PM在上面已经讨论过,所以能与PB构成等腰三角形的共有3点.
【解析】
(1)解法一:连接OB.
∵PB切⊙O于B,
∴∠OBP=90°,
∴PO2=PB2+OB2,
∵PO=2+m,PB=n,OB=2,
∴(2+m)2=n2+22m2+4m=n2;
n=4时,解,得:
(舍去),.
∴m的值为.
解法二:延长PO交⊙O于Q,PAQ为⊙O割线.
又∵PB切⊙O于B,
∴PB2=PA•PQ,(1分)
∵PB=n,PA=m,PO=m+4,
∴n2=m2+4m,(3分)
当n=4时,解得(舍去),,
∴m的值为.(5分)
(2)存在点C,使△PBC为等边三角形;(6分)
当∠OPB=30°时,过点P作⊙O的另一条切线PC,C为切点,
∴PB=PC,∠OPB=∠OPC,
∴∠BPC=60°,∴△PBC为等边三角形;(7分)
连接OB,∠OBP=90°,OB=2,得OP=4,(8分)
∴m=PA=OP-OA=2.(9分)
(3)如图,设EF为线段PB的垂直平分线,垂足为D,当EF与⊙O相切于点M时,M符合要求;(10分)
连接OB、OM,易得四边形OMDB为正方形,
∴BD=DM=OM=2,
∴n=PB=4.(12分)
由(1)得n=4时,m=,
∴当m=时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形,(13分)
此时⊙O上共有3个点能与PB构成等腰三角形.(14分)
(这3点分别是M,M1,M2.其中M是PB中垂线与⊙O的切点,M1是延长BO与⊙O的交点,M2是点B关于OP的对称点)
(2)若△PBC是等边三角形,则必有PB=PC,由于PB是⊙O的切线,且C在⊙O上,那么若存在符合条件的C点,则PC必与⊙O相切,且切点为C(切线长定理).若△PBC是等边三角形,则∠BPC=60°,∠BPO=30°,可连接OB,在Rt△OBP中,通过解直角三角形即可求得AP的长即m的值;
(3)若存在等腰△PBM,且以PB为底,那么M点必在线段PB的垂直平分线上,而⊙O上存在唯一点M,那么线段PB的中垂线与⊙O相切,且切点为M.连接OM,易证得四边形OBDM是正方形,则BP=2BD=2OB=4,即n=4,在Rt△OBP中,利用勾股定理即可求得OP的长,进而可得到AP即m的值.
在上面已经求得PB=4,若M能与PB构成等腰三角形(PB不一定是底边),可有两种情况考虑:
①BM=PB=4,由于⊙O的半径为2,那么过B作⊙O的直径BM,此时M点就符合题意;
②PB=PM=4,此种情况与(2)题相同,此时M、C重合,即PM与⊙O相切,且切点为M.
由于BM=PM在上面已经讨论过,所以能与PB构成等腰三角形的共有3点.
【解析】
(1)解法一:连接OB.
∵PB切⊙O于B,
∴∠OBP=90°,
∴PO2=PB2+OB2,
∵PO=2+m,PB=n,OB=2,
∴(2+m)2=n2+22m2+4m=n2;
n=4时,解,得:
(舍去),.
∴m的值为.
解法二:延长PO交⊙O于Q,PAQ为⊙O割线.
又∵PB切⊙O于B,
∴PB2=PA•PQ,(1分)
∵PB=n,PA=m,PO=m+4,
∴n2=m2+4m,(3分)
当n=4时,解得(舍去),,
∴m的值为.(5分)
(2)存在点C,使△PBC为等边三角形;(6分)
当∠OPB=30°时,过点P作⊙O的另一条切线PC,C为切点,
∴PB=PC,∠OPB=∠OPC,
∴∠BPC=60°,∴△PBC为等边三角形;(7分)
连接OB,∠OBP=90°,OB=2,得OP=4,(8分)
∴m=PA=OP-OA=2.(9分)
(3)如图,设EF为线段PB的垂直平分线,垂足为D,当EF与⊙O相切于点M时,M符合要求;(10分)
连接OB、OM,易得四边形OMDB为正方形,
∴BD=DM=OM=2,
∴n=PB=4.(12分)
由(1)得n=4时,m=,
∴当m=时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形,(13分)
此时⊙O上共有3个点能与PB构成等腰三角形.(14分)
(这3点分别是M,M1,M2.其中M是PB中垂线与⊙O的切点,M1是延长BO与⊙O的交点,M2是点B关于OP的对称点)
看了 (2004•南平)已知:如图...的网友还看了以下:
若点P是双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线上任意一点,下列正确的是()A. 2020-05-15 …
已知,如图,P,C是以AB为直径的半圆O上的两点,AB=10,PC的长为52π,连接PB交AC于M 2020-06-03 …
如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA= 2020-06-08 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
如图,A,P,B,C是⊙O上的四点,∠APC=∠BPC=60°猜想pa pb pc三者间的数量关系 2020-06-27 …
P是圆外一点,PA,PB分别和⊙O相切于A,B,PA=PB=4CMP是圆外一点,PA,PB分别和圆 2020-07-20 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-07-31 …
P如C是聚氯乙烯的英文缩写,为保证P如C塑料制品的性能,通常需要加入多种有机助剂.下列选项中的事实均 2020-12-09 …