早教吧作业答案频道 -->数学-->
已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的
题目详情
已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.
(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.
▼优质解答
答案和解析
∵x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根,
∴由根与系数的关系可知,x1x2=
,x1+x2=-
;
∵一元二次方程(a-6)x2+2ax+a=0有两个实数根,
∴△=4a2-4(a-6)•a≥0,且a-6≠0,
解得,a≥0,且a≠6;
(1)∵-x1+x1x2=4+x2,
∴x1x2=4+(x1+x2),即
=4-
,
解得,a=24>0;
∴存在实数a,使-x1+x1x2=4+x2成立,a的值是24;
(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=
-
+1=-
,
∴当(x1+1)(x2+1)为负整数时,a-6>0,且a-6是6的约数,
∴a-6=6,a-6=3,a-6=2,a-6=1,
∴a=12,9,8,7;
∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.
∴由根与系数的关系可知,x1x2=
a |
a−6 |
2a |
a−6 |
∵一元二次方程(a-6)x2+2ax+a=0有两个实数根,
∴△=4a2-4(a-6)•a≥0,且a-6≠0,
解得,a≥0,且a≠6;
(1)∵-x1+x1x2=4+x2,
∴x1x2=4+(x1+x2),即
a |
a−6 |
2a |
a−6 |
解得,a=24>0;
∴存在实数a,使-x1+x1x2=4+x2成立,a的值是24;
(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=
a |
a−6 |
2a |
a−6 |
6 |
a−6 |
∴当(x1+1)(x2+1)为负整数时,a-6>0,且a-6是6的约数,
∴a-6=6,a-6=3,a-6=2,a-6=1,
∴a=12,9,8,7;
∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.
看了 已知x1,x2是一元二次方程...的网友还看了以下:
若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)且存在常数λ(λ∈R), 2020-05-13 …
已知函数f(x)=x^2-2x+5是否存在实数m,使不等式m+f(x)>0对于任意x属于R恒成立, 2020-05-15 …
定积分不存在说明什么?瑕积分存在是否有几何意?比如一个函数f(x),在x=0处是无穷间断点,但它在 2020-05-16 …
高中数学设函数f(x)=ax+lnX,g(x)=(a^2)*(x^2)(1)当a=-1时,求函数y 2020-06-23 …
1.f(x)=(2x^3)/3(x1),则f(x)在x=1处的:A.左右导数都存在B.左导数存在, 2020-07-23 …
如果满足:对于任意x∈D,存在常数M大于0,均有f(x)的绝对值≤M成立,则称f(x)是D上的有界 2020-07-31 …
如果满足:对于任意x∈D,存在常数M大于0,均有f(x)的绝对值≤M成立,则称f(x)是D上的有界 2020-07-31 …
如果满足:对于任意x∈D,存在常数M大于0,均有f(x)的绝对值≤M成立,则称f(x)是D上的有界 2020-07-31 …
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f 2020-07-31 …
若存在x0,n属于N,使f(x0)+f(x0+1)+……+f(x0+n)=63成立若存在x0,n属于 2020-10-31 …