早教吧作业答案频道 -->数学-->
(2002•东城区)已知如图P是⊙O直径AB延长线上的一点,割线PCD交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E.(l)求证:PA•PB=PO•PE;(2)若DE⊥CF,∠P=15°,⊙O的半径为2,求弦CF的长.
题目详情
(2002•东城区)已知如图P是⊙O直径AB延长线上的一点,割线PCD交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E.
(l)求证:PA•PB=PO•PE;
(2)若DE⊥CF,∠P=15°,⊙O的半径为2,求弦CF的长.
(l)求证:PA•PB=PO•PE;
(2)若DE⊥CF,∠P=15°,⊙O的半径为2,求弦CF的长.
▼优质解答
答案和解析
(1)欲证PA•PB=PO•PE,而这四条线段根本构不成相似三角形,因此需要转化,根据切割线定理,PD•PC=PA•PB,所以原题可转化为证明PO•PE=PD•PC,即证△DPO∽△EPC,而这两个三角形现在共用一个角P,且根据弧AD=弧AF=弧DF,可证∠AOD=∠DCF即∠POD=∠PCE,因此得出相似,从而找出比例线段,得到等积式;
(2)由图可知,CF=CE+EF,而由垂径定理可知DE=EF,所以只要求出DE和CE即可,欲求CE,可通过证明△DHO∽△DEC,运用比例线段进行求解,至于DE,则根据题中给出的已知条件可说明三角形DHE为等腰直角三角形,而DH和HE则可通过勾股定理求出,从而求出CF的值.
(1)证明:连接OD.
∵AB是⊙O的直径,且DF⊥AB于D点H,
∴==.
∴∠AOD=∠DCF.
∴∠POD=∠PCE.
∵∠DPO=∠EPC,
∴△DPO∽△EPC.
∴.
即PO•PE=PD•PC.
又PD•PC=PA•PB,
∴PA•PB=PO•PE.
(2)【解析】
由(1)知:
AB是弦DF的垂直平分线,
∴DE=EF.
∴∠DEA=∠FEA.
∵DE⊥CF,
∴∠DEA=∠FEA=45°.
∴∠FEA=∠CEP=45°.
∵∠P=15°,
∴∠AOD=60°.
在Rt△DHO中
∵∠AOD=60°,OD=2,
∴OH=1,DH=.
∵△DHE是等腰直角三角形,
∴DE=.
又∵∠AOD=∠DCF,∠DHO=∠DEC=90°,
∴△DHO∽△DEC.
∴.
∴.
∴EC=.
∴CF=CE+EF=CE+DE=.
(2)由图可知,CF=CE+EF,而由垂径定理可知DE=EF,所以只要求出DE和CE即可,欲求CE,可通过证明△DHO∽△DEC,运用比例线段进行求解,至于DE,则根据题中给出的已知条件可说明三角形DHE为等腰直角三角形,而DH和HE则可通过勾股定理求出,从而求出CF的值.
(1)证明:连接OD.
∵AB是⊙O的直径,且DF⊥AB于D点H,
∴==.
∴∠AOD=∠DCF.
∴∠POD=∠PCE.
∵∠DPO=∠EPC,
∴△DPO∽△EPC.
∴.
即PO•PE=PD•PC.
又PD•PC=PA•PB,
∴PA•PB=PO•PE.
(2)【解析】
由(1)知:
AB是弦DF的垂直平分线,
∴DE=EF.
∴∠DEA=∠FEA.
∵DE⊥CF,
∴∠DEA=∠FEA=45°.
∴∠FEA=∠CEP=45°.
∵∠P=15°,
∴∠AOD=60°.
在Rt△DHO中
∵∠AOD=60°,OD=2,
∴OH=1,DH=.
∵△DHE是等腰直角三角形,
∴DE=.
又∵∠AOD=∠DCF,∠DHO=∠DEC=90°,
∴△DHO∽△DEC.
∴.
∴.
∴EC=.
∴CF=CE+EF=CE+DE=.
看了 (2002•东城区)已知如图...的网友还看了以下:
如图,在梯形ABCD中,AB‖CD,∠A=90°,AB=3,CD=6,BE⊥BC交直线AD于点E. 2020-05-15 …
圆的基本概念题:已知点A、B、C在直线a上,点E、D在直线a外,且任意三点不在一个圆上,则这些点最 2020-05-21 …
在三角形ABC中,AD垂直BC于D,过D做DE垂直AC于E,过D做DF垂直AB于F,求证:B,C, 2020-05-21 …
设E是平面的有界闭集,d是E的直径,及d是E中任意两点距离的上确界,求证,在E中存在两点P1,P2 2020-06-23 …
矩形oabc的边oa.oc在平面直角坐标中,oa=2,oc=3,过原点o角AOC的平分线交AB于点 2020-07-02 …
(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的 2020-07-21 …
E为三角形ABC中AB边的中点,D为三角形ABC外一点,E为三角形ABC中AB边的重点,D为三角形 2020-07-22 …
(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的 2020-07-22 …
如图,在四棱锥D′-ABCE中,底面为直角梯形,AB=2BC=2CE=2,且AB⊥BC,AB∥CE 2020-07-31 …
三角形ABC中,DAE为角A的外角平分线,BD垂直DE于D,CE垂直DE于E,BE和CD交于F,求 2020-08-03 …