早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系xOy中,抛物线y=x2-x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终
题目详情
如图,在平面直角坐标系xOy中,抛物线y=x2-x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
▼优质解答
答案和解析
(1)已知抛物线的解析式,当x=0时,可求得B的坐标;由于BC∥OA,把B的纵坐标代入抛物线的解析式,可求出C的坐标;当y=0时,可求出A的坐标.求顶点坐标时用公式法或配方法都可以;
(2)当四边形ACQP是平行四边形时,AP、CQ需满足平行且相等的条件.已知BC∥OA,只需求t为何值时,AP=CQ,可先用t表示AP,CQ,再列出方程即可求出t的值;
(3)当0<t<时,根据OA=18,P点的速度为4单位/秒,可得出P点总在OA上运动.△PQF中,Q到PF的距离是定值即OB的长,因此只需看PF的值是否有变化即可得出S△PQF是否为定值,已知QC∥PF,根据平行线分线段成比例定理可得出:,因此可得出OP=AF,那么PF=PA+AF=PA+OP=OA,由于OA的长为定值即PF的长为定值,因此△PQF的面积是不会变化的.其面积的值可用OA•OB求出;
(4)可先用t表示出P,F,Q的坐标,然后根据坐标系中两点间的距离公式得出PF2,PQ2,FQ2,进而可分三种情况进行讨论:
①△PFQ以PF为斜边.则PF2=PQ2+FQ2,可求出t的值.
②△PFQ以PQ为斜边,方法同①
③△PFQ以FQ为斜边,方法同①.
综合三种情况即可得出符合条件的t的值.
【解析】
(1)y=(x2-8x-180),
令y=0,得x2-8x-180=0,
即(x-18)(x+10)=0,
∴x=18或x=-10.
∴A(18,0)
在y=x2-x-10中,令x=0得y=-10,
即B(0,-10).
由于BC∥OA,
故点C的纵坐标为-10,
由-10=x2-x-10得,
x=8或x=0,
即C(8,-10)且易求出顶点坐标为(4,),
于是,A(18,0),B(0,-10),C(8,-10),顶点坐标为(4,);
(2)若四边形PQCA为平行四边形,由于QC∥PA.
故只要QC=PA即可,
而PA=18-4t,CQ=t,
故18-4t=t得t=;
(3)设点P运动t秒,则OP=4t,CQ=t,0<t<4.5,
说明P在线段OA上,且不与点OA、重合,
由于QC∥OP知△QDC∽△PDO,故
∵AF=4t=OP
∴PF=PA+AF=PA+OP=18
又∵点Q到直线PF的距离d=10,
∴S△PQF=PF•d=×18×10=90,
于是△PQF的面积总为90;
(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10)t∈(0,4.5).
∴PQ2=(4t-8+t)2+102=(5t-8)2+100
FQ2=(18+4t-8+t)2+102=(5t+10)2+100.
①若FP=FQ,则182=(5t+10)2+100.
即25(t+2)2=224,(t+2)2=.
∵0≤t≤4.5,
∴2≤t+2≤6.5,
∴t+2==.
∴t=-2,
②若QP=QF,则(5t-8)2+100=(5t+10)2+100.
即(5t-8)2=(5t+10)2,无0≤t≤4.5的t满足.
③若PQ=PF,则(5t-8)2+100=182.
即(5t-8)2=224,由于≈15,又0≤5t≤22.5,
∴-8≤5t-8≤14.5,而14.52=()2=<224.
故无0≤t≤4.5的t满足此方程.
注:也可解出t=<0或t=>4.5均不合题意,
故无0≤t≤4.5的t满足此方程.
综上所述,当t=-2时,△PQF为等腰三角形.
(2)当四边形ACQP是平行四边形时,AP、CQ需满足平行且相等的条件.已知BC∥OA,只需求t为何值时,AP=CQ,可先用t表示AP,CQ,再列出方程即可求出t的值;
(3)当0<t<时,根据OA=18,P点的速度为4单位/秒,可得出P点总在OA上运动.△PQF中,Q到PF的距离是定值即OB的长,因此只需看PF的值是否有变化即可得出S△PQF是否为定值,已知QC∥PF,根据平行线分线段成比例定理可得出:,因此可得出OP=AF,那么PF=PA+AF=PA+OP=OA,由于OA的长为定值即PF的长为定值,因此△PQF的面积是不会变化的.其面积的值可用OA•OB求出;
(4)可先用t表示出P,F,Q的坐标,然后根据坐标系中两点间的距离公式得出PF2,PQ2,FQ2,进而可分三种情况进行讨论:
①△PFQ以PF为斜边.则PF2=PQ2+FQ2,可求出t的值.
②△PFQ以PQ为斜边,方法同①
③△PFQ以FQ为斜边,方法同①.
综合三种情况即可得出符合条件的t的值.
【解析】
(1)y=(x2-8x-180),
令y=0,得x2-8x-180=0,
即(x-18)(x+10)=0,
∴x=18或x=-10.
∴A(18,0)
在y=x2-x-10中,令x=0得y=-10,
即B(0,-10).
由于BC∥OA,
故点C的纵坐标为-10,
由-10=x2-x-10得,
x=8或x=0,
即C(8,-10)且易求出顶点坐标为(4,),
于是,A(18,0),B(0,-10),C(8,-10),顶点坐标为(4,);
(2)若四边形PQCA为平行四边形,由于QC∥PA.
故只要QC=PA即可,
而PA=18-4t,CQ=t,
故18-4t=t得t=;
(3)设点P运动t秒,则OP=4t,CQ=t,0<t<4.5,
说明P在线段OA上,且不与点OA、重合,
由于QC∥OP知△QDC∽△PDO,故
∵AF=4t=OP
∴PF=PA+AF=PA+OP=18
又∵点Q到直线PF的距离d=10,
∴S△PQF=PF•d=×18×10=90,
于是△PQF的面积总为90;
(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10)t∈(0,4.5).
∴PQ2=(4t-8+t)2+102=(5t-8)2+100
FQ2=(18+4t-8+t)2+102=(5t+10)2+100.
①若FP=FQ,则182=(5t+10)2+100.
即25(t+2)2=224,(t+2)2=.
∵0≤t≤4.5,
∴2≤t+2≤6.5,
∴t+2==.
∴t=-2,
②若QP=QF,则(5t-8)2+100=(5t+10)2+100.
即(5t-8)2=(5t+10)2,无0≤t≤4.5的t满足.
③若PQ=PF,则(5t-8)2+100=182.
即(5t-8)2=224,由于≈15,又0≤5t≤22.5,
∴-8≤5t-8≤14.5,而14.52=()2=<224.
故无0≤t≤4.5的t满足此方程.
注:也可解出t=<0或t=>4.5均不合题意,
故无0≤t≤4.5的t满足此方程.
综上所述,当t=-2时,△PQF为等腰三角形.
看了 如图,在平面直角坐标系xOy...的网友还看了以下:
如图,直线a垂直直线b,试作线段MN分别关于a、b成轴对称的线段M’N’和M”N”,并说如图,直线 2020-04-26 …
如图,直线l1:y=x+3与x轴交与点A,与y轴交于点P,直线l2:y=-2x+m与x轴交于点B, 2020-04-26 …
如图,直线y=-√3/3x+1与x轴、y轴分别交与A、B两点描述如下如图,直线y=-三分之根号三x 2020-05-16 …
设直线L分别与X轴Y轴交与点AB,如果直线M:Y=KX+T(T大于0)与直线L平行且交X轴于C,求 2020-06-12 …
如图,直线y=-4/3x+8与x轴,y轴分别交于点A和点B,M是OB上的一点若将......... 2020-07-24 …
如图,直线y=2x+3与x轴相交于点A,与y轴相较于点B,(1)求A,B两点的坐标;(2)过B点作直 2020-11-04 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …
如图,已知在平面直角坐标系内直线y=-3/4x+3分别与x轴、y轴相交于点A和点B,直线m为过点O的 2020-12-25 …
如图,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x²+bx+c经过点B和点C,点A 2021-01-10 …
已知如图,直线AB:y=-x+8与x轴,y轴分别交与点B,A,过点B作直线AB的垂线交y轴与点D已知 2021-01-11 …