早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•威海)如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第

题目详情
(2012•威海)如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为______.
▼优质解答
答案和解析
设直线AC的解析式为:y=kx+b,
∵△ABC的顶点坐标分别为(4,0),(8,2),(6,4),
4k+b=0
6k+b=4

解得:
k=2
b=−8

∴直线AC的解析式为:y=2x-8,
同理可得:直线AB的解析式为:y=
1
2
x-2,直线BC的解析式为:y=-x+10,
∵△A1B1C1的两个顶点的坐标为(1,3),(2,5),
∴过这两点的直线为:y=2x+1,
∴过这两点的直线与直线AC平行,
①若A的对应点为A1(1,3),C的对应点为C1(2,5),
则B1C1∥BC,B1A1∥BA,
设直线B1C1的解析式为y=-x+a,直线B1A1的解析式为y=
1
2
x+b,
∴-2+a=5,
1
2
+b=3,
解得:a=7,b=
5
2

∴直线B1C1的解析式为y=-x+7,直线B1A1的解析式为y=
1
2
x+
5
2

则直线B1C1与直线B1A1的交点为:(3,4);
②若C的对应点为A1(1,3),A的对应点为C1(2,5),
则B1A1∥BC,B1C1∥BA,
设直线B1C1的解析式为y=
1
2
x+c,直线B1A1的解析式为y=-x+d,
1
2
×2+c=5,-1+d=3,
解得:c=4,d=4,
∴直线B1C1的解析式为y=
1
2
x+4,直线B1A1的解析式为y=-x+4,
则直线B1C1与直线B1A1的交点为:(0,4).
∴△A1B1C1的第三个顶点的坐标为(3,4)或(0,4).
故答案为:(3,4)或(0,4).