早教吧作业答案频道 -->数学-->
设P(X0,Y0)是抛物线y^2=2px(p>0)上一定点,A,B是抛物线上两点,且PA垂直PB,求证:AB过点(2p+X0,-Y0)
题目详情
设P(X0,Y0)是抛物线y^2=2px(p>0)上一定点,A,B是抛物线上两点,且PA垂直PB,求证:AB过点(2p+X0,-Y0)
▼优质解答
答案和解析
设AB的方程为x=ky+b,代入y^2=2px中,得,y^2+2pky-2pb=0
y1+y2=2pk,y1y2= -2pb
设A(x1,y1),B(x2,y2).PA⊥PB,kpa*kpb= -1
(y1-y0)/(x1-x0)*(y2-y0)/(x2-x0)= -1,(1)
代入,(1)x1=y1^2/2p,x0=y0^2/2p,x2=y0^2/2p得
(y1+y0)(y2+y0)= -4p^2
y1y2+(y1+y2)y0+y0^2+4p^2=0
-2pb+2pky0+2px0+4p^2=0
b=ky0+x0+2p
AB的方程为x=ky+b=ky+ky0+x0+2p=k(y+y0)+x0+2p
x=k(y+y0)+x0+2p
所以它一定经过(2p+X0,-Y0)
y1+y2=2pk,y1y2= -2pb
设A(x1,y1),B(x2,y2).PA⊥PB,kpa*kpb= -1
(y1-y0)/(x1-x0)*(y2-y0)/(x2-x0)= -1,(1)
代入,(1)x1=y1^2/2p,x0=y0^2/2p,x2=y0^2/2p得
(y1+y0)(y2+y0)= -4p^2
y1y2+(y1+y2)y0+y0^2+4p^2=0
-2pb+2pky0+2px0+4p^2=0
b=ky0+x0+2p
AB的方程为x=ky+b=ky+ky0+x0+2p=k(y+y0)+x0+2p
x=k(y+y0)+x0+2p
所以它一定经过(2p+X0,-Y0)
看了 设P(X0,Y0)是抛物线y...的网友还看了以下:
如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y 2020-05-13 …
如图,已知直线l:y=√3/3x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线 2020-05-13 …
如图,已知直线l:y=3√3x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交 2020-05-17 …
如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的 2020-07-09 …
如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=4x(x>0)图象上位于直线下方的 2020-07-26 …
(2013•东营)如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B 2020-07-29 …
点P、Q在反比例函数y=x分之k(k大于0)第一象限内的图像上,过点P作PE垂直于y轴,过点Q作Q 2020-08-01 …
如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂 2020-10-31 …
下列说法中不正确的是()。A.对于线性回归方程yˆ=bˆx+aˆ,直线必经过点(x¯,y¯)B.茎叶 2020-11-03 …
如图,直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点 2020-11-06 …