早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知在平面直角坐标系xOy中(如图),已知抛物线y=-x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设

题目详情
已知在平面直角坐标系xOy中(如图),已知抛物线y=-x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.
作业帮
(1)求这条抛物线的表达式和点B的坐标;
(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.
▼优质解答
答案和解析
(1)∵抛物线的对称轴为x=1,
∴x=-
b
2a
=1,即
-b
2×(-1)
=1,解得b=2.
∴y=-x2+2x+c.
将A(2,2)代入得:-4+4+c=2,解得:c=2.
∴抛物线的解析式为y=-x2+2x+2.
配方得:y=-(x-1)2+3.
∴抛物线的顶点坐标为(1,3).
(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).
作业帮
∵M(1,m),C(1,2),
∴MC=m-2.
∴cot∠AMB=
CM
AC
=m-2.
(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,
∴抛物线向下平移了3个单位.
∴平移后抛物线的解析式为y=-x2+2x-1,PQ=3.
∵OP=OQ,
∴点O在PQ的垂直平分线上.
又∵QP∥y轴,
∴点Q与点P关于x轴对称.
∴点Q的纵坐标为-
3
2

将y=-
3
2
代入y=-x2+2x-1得:-x2+2x-1=-
3
2
,解得:x=
2+
6
2
或x=
2-
6
2

∴点Q的坐标为(
2+
6
2
,-
3
2
)或(
2-
6
2
,-
3
2
).