早教吧 育儿知识 作业答案 考试题库 百科 知识分享

正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE;(2)当正方形ABCD绕点A顺时针旋

题目详情
正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.

(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE;
(2)当正方形ABCD绕点A顺时针旋转至图2时.线段 AF,BF与OE具有什么数量关系?并说明理由.
(3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你的猜想.
▼优质解答
答案和解析
(1)证明:如图1,过点B作BG⊥OE于G,
则四边形BGEF是矩形,
∴EF=BG,BF=GE,
在正方形ABCD中,OA=OB,∠AOB=90°,
∵BG⊥OE,
∴∠OBG+∠BOE=90°,
∵∠AOE+∠BOE=90°,
∴∠AOE=∠OBG,
∵在△AOE和△OBG中,
∠AOE=∠OBG 
∠AEO=∠OGB=90° 
OA=OB 

∴△AOE≌△OBG(AAS),
∴OG=AE,OE=BG,
∵AF-EF=AE,EF=BG=OE,AE=OG=OE-GE=OE-BF,
∴AF-OE=OE-BF,
∴AF+BF=2OE;
(2)图2,结论:AF-BF=2OE,
证明:过点B作BG⊥OE交OE的延长线于G,
则四边形GFEB是矩形,
∴EF=BG,BF=GE,
在正方形ABCD中,OA=OB,∠AOB=90°,
∵BG⊥OE,
∴∠OBG+∠BOE=90°,
又∵∠AOE+∠BOE=90°,
∴∠AOE=∠OBG,
∵在△AOE和△OBG中,
∠AOE=∠OBG 
∠AEO=∠OGB=90° 
OA=OB 

∴△AOE≌△OBG(AAS),
∴OG=AE,OE=BG,
∵AF-EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF,
∴AF-OE=OE+BF,
∴AF-BF=2OE;
(3)图3,结论:BF-AF=2OE.
理由:作OG⊥BF于G,
则四边形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
在△AOE和△BOG中,
∠AOE=∠BOG
∠AEO=∠BGO
OA=OB

∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE-EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF-AF=BG+GF-(AE-EF)=AE+OE-AE+EF=OE+OE=2OE,
∴BF-AF=2OE.