早教吧作业答案频道 -->其他-->
正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE;(2)当正方形ABCD绕点A顺时针旋
题目详情
正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE;
(2)当正方形ABCD绕点A顺时针旋转至图2时.线段 AF,BF与OE具有什么数量关系?并说明理由.
(3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你的猜想.
(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE;
(2)当正方形ABCD绕点A顺时针旋转至图2时.线段 AF,BF与OE具有什么数量关系?并说明理由.
(3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你的猜想.
▼优质解答
答案和解析
(1)证明:如图1,过点B作BG⊥OE于G,
则四边形BGEF是矩形,
∴EF=BG,BF=GE,
在正方形ABCD中,OA=OB,∠AOB=90°,
∵BG⊥OE,
∴∠OBG+∠BOE=90°,
∵∠AOE+∠BOE=90°,
∴∠AOE=∠OBG,
∵在△AOE和△OBG中,
,
∴△AOE≌△OBG(AAS),
∴OG=AE,OE=BG,
∵AF-EF=AE,EF=BG=OE,AE=OG=OE-GE=OE-BF,
∴AF-OE=OE-BF,
∴AF+BF=2OE;
(2)图2,结论:AF-BF=2OE,
证明:过点B作BG⊥OE交OE的延长线于G,
则四边形GFEB是矩形,
∴EF=BG,BF=GE,
在正方形ABCD中,OA=OB,∠AOB=90°,
∵BG⊥OE,
∴∠OBG+∠BOE=90°,
又∵∠AOE+∠BOE=90°,
∴∠AOE=∠OBG,
∵在△AOE和△OBG中,
,
∴△AOE≌△OBG(AAS),
∴OG=AE,OE=BG,
∵AF-EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF,
∴AF-OE=OE+BF,
∴AF-BF=2OE;
(3)图3,结论:BF-AF=2OE.
理由:作OG⊥BF于G,
则四边形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
在△AOE和△BOG中,
,
∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE-EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF-AF=BG+GF-(AE-EF)=AE+OE-AE+EF=OE+OE=2OE,
∴BF-AF=2OE.
则四边形BGEF是矩形,
∴EF=BG,BF=GE,
在正方形ABCD中,OA=OB,∠AOB=90°,
∵BG⊥OE,
∴∠OBG+∠BOE=90°,
∵∠AOE+∠BOE=90°,
∴∠AOE=∠OBG,
∵在△AOE和△OBG中,
|
∴△AOE≌△OBG(AAS),
∴OG=AE,OE=BG,
∵AF-EF=AE,EF=BG=OE,AE=OG=OE-GE=OE-BF,
∴AF-OE=OE-BF,
∴AF+BF=2OE;
(2)图2,结论:AF-BF=2OE,
证明:过点B作BG⊥OE交OE的延长线于G,
则四边形GFEB是矩形,
∴EF=BG,BF=GE,
在正方形ABCD中,OA=OB,∠AOB=90°,
∵BG⊥OE,
∴∠OBG+∠BOE=90°,
又∵∠AOE+∠BOE=90°,
∴∠AOE=∠OBG,
∵在△AOE和△OBG中,
|
∴△AOE≌△OBG(AAS),
∴OG=AE,OE=BG,
∵AF-EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF,
∴AF-OE=OE+BF,
∴AF-BF=2OE;
(3)图3,结论:BF-AF=2OE.
理由:作OG⊥BF于G,
则四边形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
在△AOE和△BOG中,
|
∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE-EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF-AF=BG+GF-(AE-EF)=AE+OE-AE+EF=OE+OE=2OE,
∴BF-AF=2OE.
看了 正方形ABCD的顶点A在直线...的网友还看了以下:
已知一次函数的图像经过(-1,-5)和(2,1)两点.求此一次函数的解析式 2020-04-08 …
一个函数的图象过M(1,2),N(-1,-1)两点,求这个一次函数的解析式. 2020-04-08 …
求轨迹数学题设动直线L垂直于X轴,且与椭圆x的平方加上二倍y的平方等于4交于A、B两点,P是L上满 2020-05-17 …
求不等式|x|+|y|≤2的平面区域面积2.设动直线l垂直于x轴,且与椭圆x2+2y2=4交于A、 2020-05-22 …
双曲线y=x分之—8过(a+1,4)点,求a的值 2020-06-03 …
已知:二次函数图象的顶点在X轴上,且该图象经过A(1,-1)、B(5,-1)两点,求此函数的解析式 2020-07-03 …
一圆经过A(3,-2),B(2,1)两点,求分别满足下列条件的圆的方程(1)圆心在直线x-2y-3 2020-07-15 …
如果说得好可以加好多好多分1,一次函数y=kx+b的图象与反比例函数y=x/-2,的图象相交于A- 2020-07-22 …
已知一次函数的图像过(0,-3)(-2,-1)两点求这个一次函数的解析式求当x=2时的函数值 2020-07-25 …
已知圆经过点A(2,-2),B(5,3),C(3,-1)三点,求圆的方程 2020-11-11 …