早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}为a0,a1,a2,a3,…,an(n∈N),bn=ni=0ai表示a0+a1+a2+a3+…+an,i∈N.(1)若数列{an}为等比数列an=2n(n∈N),求ni=0(biCin);(2)若数列{an}为等差数列an=2n(n∈N),求ni=1

题目详情
已知数列{an}为a0,a1,a2,a3,…,an(n∈N),bn=
n
i=0
ai表示a0+a1+a2+a3+…+an,i∈N.
(1)若数列{an}为等比数列an=2n(n∈N),求
n
i=0
(biC
 
i
n
);
(2)若数列{an}为等差数列an=2n(n∈N),求
n
i=1
(biC
 
i
n
).
▼优质解答
答案和解析
(1)∵an=2n,bn=
n
i=0
ai,
bn=20+21+22+…+2n=2n+1−1,
n
i=0
(bi
C
i
n
)=(21−1)
C
0
n
+(22−1)
C
1
n
+(23−1)
C
2
n
+…+(2n+1−1)
C
n
n

=21•
C
0
n
−1•
C
0
n
+22•
C
1
n
−1•
C
1
n
+23•
C
2
n
−1•
C
2
n
+…+2n+1•
C
n
n
−1•
C
n
n

=2(
C
0
n
+21•
C
1
n
+22•
C
2
n
+…+2n•
C
n
n
)−(
C
0
n
+
C
1
n
+
C
2
n
+…+
C
n
n
)
=2(1+2)n-2n=2•3n-2n. …(4分)
(2)∵an=2n,bn=
n
i=0
ai,
∴bn=0+2+4+…+2n=n(n+1),
n
i=0
(bi
C
i
n
)=1•2•
C
1
n
+2•3•
C
2
n
+3•4•
C
3
n
+…+n(n+1)
C
n
n

(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+
C
3
n
x3+…+
C
n
n
xn,
两边同乘以x,则有x(1+x)n=
C
0
n
x+
C
1
n
x2+
C
2
n
x3+
C
3
n
x4+…+
C
n
n
xn+1,
两边求导,左边=(1+x)n+nx(1+x)n-1
右边=
C
0
n
+2
C
1
n
x+3
C
2
n
x2+4
C
3
n
x3+…+(n+1)
C
n
n
xn,
(1+x)n+nx(1+x)n−1=
C
0
n
+2
C
1
n
x+3
C
2
n
x2+4
C
3
n
x3+…+(n+1)
C
n
n
xn(*),
对(*)式两边再求导,
2n(1+x)n−1+n(n−1)x(1+x)n−2=2•1•
C
1
n
+3•2•
C
2
n
x+4•3•
C
3
n
x2+…+(n+1)n
C
n
n
xn−1
取x=1,则有(n2+3n)•2n−2=1•2•
C
1
n
+2•3•
C
2
n
+3•4•
C
3
n
+…+n(n+1)
C
n
n

n
i=1
(bi
C
i
n
)=(n2+3n)•2n−2.…(10分)