早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在等边△ABC中,AB=4,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是.

题目详情
如图,在等边△ABC中,AB=4,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是___.
作业帮
▼优质解答
答案和解析
作业帮 过C作CN⊥AB于N,交AD于M,连接BM,则BM+MN最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BM+MN=CN,
∵等边△ABC中,AD平分∠CAB,
∴AD⊥BC,
∴AD是BC的垂直平分线(三线合一),
∴C和B关于直线AD对称,
∴CM=BM,
即BM+MN=CM+MN=CN,
∵CN⊥AB,
∴∠CNB=90°,CN是∠ACB的平分线,AN=BN(三线合一),
∵∠ACB=60°,
∴∠BCN=30°,
∵AB=4,
∴BN=
1
2
AB=2,
在△BCN中,由勾股定理得:CN=
BC2-BN2
=
42-22
=2
3
,即BM+MN的最小值是2
3

故答案为:2
3