早教吧作业答案频道 -->数学-->
三角函数题目求解若三角形ABC的内角A,B满足sinB/sinA=2cos(A+B),则tanB的最大值为求详解和答案答案是根号3/3
题目详情
三角函数题目求解
若三角形ABC的内角A,B满足sinB/sinA=2cos(A+B),则tanB的最大值为 求详解和答案
答案是根号3/3
若三角形ABC的内角A,B满足sinB/sinA=2cos(A+B),则tanB的最大值为 求详解和答案
答案是根号3/3
▼优质解答
答案和解析
分析:由A和B为三角形的内角,得到sinA和sinB都大于0,进而确定出C为钝角,利用诱导公式及三角形的内角和定理化简已知等式的左边,得到sinB=-2sinAcosC,再由sinB=sin(A+C),利用两角和与差的正弦函数公式化简,再利用同角三角函数间的基本关系化简,得到tanC=-3tanA,将tanB利用诱导公式及三角形的内角和定理化简为-tan(A+C),利用两角和与差的正切函数公式化简,将tanC=-3tanA代入,变形后利用基本不等式求出tanB的范围,即可得到tanB的最大值.
∵sinA>0,sinB>0,
∴sinB / sinA =2cos(A+B)=-2cosC>0,即cosC<0,
∴C为钝角,sinB=-2sinAcosC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC+cosAsinC=-2sinAcosC,即cosAsinC=-3sinAcosC,
∴tanC=-3tanA,
∴tanB=-tan(A+C)=-(tanA+tanC/1-tanAtanC) =-(-2tanA /1+3tan2A) =2 / (1 / tanA+3tanA) ≤
2 / 2根号3 =(根号3 )/3 ,
当且仅当
1/tanA=3tanA,即tanA=(根号3)/3 时取等号,
则tanB的最大值为(根号3)/3.
∵sinA>0,sinB>0,
∴sinB / sinA =2cos(A+B)=-2cosC>0,即cosC<0,
∴C为钝角,sinB=-2sinAcosC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC+cosAsinC=-2sinAcosC,即cosAsinC=-3sinAcosC,
∴tanC=-3tanA,
∴tanB=-tan(A+C)=-(tanA+tanC/1-tanAtanC) =-(-2tanA /1+3tan2A) =2 / (1 / tanA+3tanA) ≤
2 / 2根号3 =(根号3 )/3 ,
当且仅当
1/tanA=3tanA,即tanA=(根号3)/3 时取等号,
则tanB的最大值为(根号3)/3.
看了 三角函数题目求解若三角形AB...的网友还看了以下:
已知全集U=N,集合A={x | x=2n,n∈N} ,B={x | x=4n,n∈N},则A . 2020-04-06 …
各位数学高手,帮我解下这几道题,谢谢~这几题只要最后答案:(1)-(a^5)^4÷(a^2)^3( 2020-05-21 …
这道题的得数是什么?对于任意正整数n,按照n———平方———+n———除以n——-n——答案程序计 2020-05-24 …
有关数列极限的证明方法问题如证明n-->∞时,[sqrt(n^2+a^2)]/n-->1,能否用放 2020-06-05 …
等差数列{an},a1+a2+…+a9=A,a(n-8)+a(n-7)+…+an=B,则Sn等于( 2020-07-09 …
已知数列an的前n项和sn=-n^2+3n,若a(n+1)a(n+2)=80,则n的值为?我用sn 2020-07-13 …
y1=4n^3,y2=3n^2,y3=n是差分方程差分方程y(n+2)+a(n)y(n+1)+a2 2020-07-31 …
按下列程序计算,把答案写在表格内:n→平方→+n→÷n→-n→答案(1)在表格中填写答案:(2)请 2020-07-31 …
当|z|≤1时,求|zn+a|的最大值,其中n为正整数,a为复数.答案是1+|a|zn表示z的n次 2020-08-01 …
不定方程求详解.3000*1%+(6000-3000)*X%+(6500-6000)*Y%=120 2020-08-02 …