早教吧作业答案频道 -->数学-->
点O是三角形ABC的三个内角平分线的交点,DE垂直于AO求证:三角形BOC相似BOD相似OEC
题目详情
点O是三角形ABC的三个内角平分线的交点,DE垂直于AO
求证:三角形BOC相似BOD相似OEC
求证:三角形BOC相似BOD相似OEC
▼优质解答
答案和解析
延长AO交BC于点G
∠BOD=90°-∠BOG=90°-(∠BAO+∠ABO)=90°-(∠BAC+∠ABC)/2=(180°-∠BAC-∠ABC)/2=∠ACB/2=∠ECO=∠BCO
同理可知:∠COE=∠OBD=∠OBC
所以:△BOC∽△BOD∽△OEC
∠BOD=90°-∠BOG=90°-(∠BAO+∠ABO)=90°-(∠BAC+∠ABC)/2=(180°-∠BAC-∠ABC)/2=∠ACB/2=∠ECO=∠BCO
同理可知:∠COE=∠OBD=∠OBC
所以:△BOC∽△BOD∽△OEC
看了 点O是三角形ABC的三个内角...的网友还看了以下:
请问Haagen-Dazs(哈根达斯)的英语音标是什么?上英语课要用,是/ha g*n da z/ 2020-05-16 …
如果两个相似三角形对应高的比为5比4,对应中线的比为?对应叫平分线的比?若三角形ABC与三角形A' 2020-06-02 …
三角形ABC相似三角形A1B1C1,相似比为2/3,三角形A1B1C1相似三角形A2B2C2,相似 2020-06-03 …
求一道相似三角形的题在三角形ABC中,角BAC等于90度,D是BC中点,AE垂直于AD,交CD延长 2020-06-03 …
九年级上册的相似三角形基础题在直角坐标系中,△ABC的三点坐标为:A(-1,1),B(2,3),C 2020-07-24 …
在矩形ABCD中,E为AD中点,EF垂直于EC交AB于F,连接FC(1)三角形AEF与三角形ECF 2020-07-31 …
三角形ABC中,AB=AC=5,tanC=3/4,点D是BC边上一个动点,DE//AC交AB与E, 2020-08-01 …
初三相似三角形已知:如图,等腰梯形ABCD中,AB//DC,BE垂直于DC于E,联结BD,F是BD 2020-08-02 …
A字型的形似三角形是位似图形吗? 2020-08-02 …
1.如图,已知正方形ABCD中,P是BC边上的点,BP=3PC,Q是CD的中点,求证:三角形ADQ相 2020-12-25 …